Neutrino-induced production of radioisotopes in Core-Collapse Supernovae

A. Sieverding¹, L. Huther¹, G. Martínez-Pinedo¹, K. Langanke^{1,2},A. Heger³

¹Technische Universität Darmstadt
 ²GSI Helmholtzzentrum, Darmstadt
 ³Monash Centre for Astrophysics, Melbourne

MICRA 2015, Stockholm, 18th August

MICRA 2015

Neutrino Nucleosynthesis

Introduction

The *v*-process

2 Results with updated physics

- Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta
- Radioactive nuclei relevant for γ -ray astronomy
- Radioisotopes in meteorites

3 Summary and Outlook

Core-Collapse Supernovae

- Collapse-Collapse after hydrostatic burning turns into an explosion
- Hydrodynamic shock triggers explosive nucleosynthesis and ejection of material
- Cooling core emitts neutrinos
- Neutrinos influence the nucleosynthesis in outer layers of SNe

(Not to scale) from Wikimedia commons

Core-Collapse Supernovae

- Collapse-Collapse after hydrostatic burning turns into an explosion
- Hydrodynamic shock triggers explosive nucleosynthesis and ejection of material
- Cooling core emitts neutrinos
- Neutrinos influence the nucleosynthesis in outer layers of SNe
- Impact on the composition of the ejecta
- Production of rare isotopes

(Not to scale) from Wikimedia commons

Neutrino nucleosynthesis

- Emission of 10⁵⁸ Neutrinos from the collapsing core
- $\langle E_{\nu}
 angle pprox 8 13$ MeV
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$

Relevant processes

- **1** Inverse β -decay
- Particle emission
- Capture of spallation products

MICRA 2015

- The supernova shock leads to high temperatures and densities
- Photodissociation and particle capture reactions dominate explosive nucleosynthesis
- ν-process affects regions with sufficient neutrino fluxes and moderate post-shock temperatures
- $\bullet~O/Ne-, C/O-$ and lower He-layers

- The supernova shock leads to high temperatures and densities
- Photodissociation and particle capture reactions dominate explosive nucleosynthesis
- ν-process affects regions with sufficient neutrino fluxes and moderate post-shock temperatures
- $\bullet~O/Ne-, C/O-$ and lower He-layers
- Main examples for the ν process: ⁷Li and ¹¹B via ⁴He(ν_x, ν'_x p/n) and ¹²C(ν_x, ν'_x p) ...

¹⁹**F** via ²⁰Ne(
$$\nu_x, \nu'_x$$
 p/n)

¹³⁸La and ¹⁸⁰Ta via ¹³⁸Ba(ν_e, e^-) and ¹⁸⁰Hf(ν_e, e^-)

Neutrino Spectra from state-of-the art SN simulations

Fischer et al. (2014)

Janka et al. (2012)

- Detailed descriptions of neutrino transport are included
- More channels for neutrino-matter interactions
- Ineslastic channels reduce the average energies

- Simulations including detailed neutrino transport give new estimates for typical neutrino energies: $\langle E_{\nu} \rangle$ =8-13 MeV compared to 13-25 MeV
- Neutrino-nucleus cross-sections have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis)
- Parametric description of thermodynamic and neutrino-flux quantities (Woosley et al. 1990)

Parametrization of the Supernova explosion

• Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990)

•
$$T_{\text{Peak}} = 2.4 \times 10^9 \text{K} \times \left(\frac{E_{\text{expl}}}{10^{51} \text{erg}}\right)^{1/4} \times \left(\frac{R}{10^9 \text{cm}}\right)^{-3/4}$$

Woosley et al. 2002

A. Sieverding, L. Huther, G. Martínez-Pinedo, A. Heger

Exponentially decreasing

Thermal Fermi-Dirac spectrum

neutrino luminosity

Neutrino flux

Introduction

• The ν -process

2 Results with updated physics

- Production of ⁷Li,¹¹B,¹⁹F,¹³⁸La,¹⁸⁰Ta
- Radioactive nuclei relevant for γ -ray astronomy
- Radioisotopes in meteorites

3 Summary and Outlook

Evaluation of CCSNe nucleosynthesis calculations

• The solar abundances provide oberservational infomation for nucleosynthesis results to compare with

Production factor
•
$$P_A = \frac{X_A}{X_A^{\odot}}$$

• Assuming that CCSNe are the main source of solar ¹⁶O :
• $P_{A,\text{normalized}} = \frac{P_A}{P_{16O}}$

Evaluation of CCSNe nucleosynthesis calculations

• The solar abundances provide oberservational infomation for nucleosynthesis results to compare with

Production factor

•
$$P_A = \frac{X_A}{X_A^{\odot}}$$

• Assuming that CCSNe are the main source of solar $^{16}\mathrm{O}$:

•
$$P_{A,\text{normalized}} = \frac{P_A}{P_{16_O}}$$

• $P_{A,\text{normalized}} \sim 1$ indicates CCSNe as possible production site • $P_{A,\text{normalized}} \ll 1$ hints another production site or mechanism • 25 M_{\odot} progenitor with solar metallicity (Heger et al. 2002)

Nucleus	no ν	present work	Heger et al. (2005)
⁷ Li	10^{-4}	0.11	-
¹¹ B	0.003	0.8	1.18
¹⁹ F	0.06	0.24	0.32
¹³⁸ La	0.03	0.63	0.90
¹⁸⁰ Ta	0.14	1.80	4.24

• present work: $\langle E_{
u_e}
angle =$ 8.8 MeV, $\langle E_{ar{
u}_e,
u_x}
angle =$ 12.6 MeV

• Heger et al.: $\langle E_{
u_e, ar
u_e}
angle = 12.6$ MeV, $\langle E_{
u_x}
angle = 18.9$ MeV

Introduction

• The ν -process

Results with updated physics Production of ⁷Li,¹¹B,¹⁹F,¹³⁸La,¹⁸⁰Ta

- Radioactive nuclei relevant for $\gamma\text{-ray}$ astronomy
- Radioisotopes in meteorites

3 Summary and Outlook

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478
⁵⁶ Ni	111 d	${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^* \rightarrow {}^{56}\text{Fe}^{*+}e^+$	847, 1238
⁵⁷ Ni	390 d	$^{57}Co \rightarrow ^{57}Fe^*$	122
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^{*}+e^{+}$	1275
⁴⁴ Ti	89 y	$^{44}\text{Ti}\rightarrow^{44}\text{Sc}*\rightarrow^{44}\text{Ca}*+e^+$	1157, 78, 68
26 Al	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	$^{60}\text{Fe} \rightarrow ^{60}\text{Co}^*$	1173, 1332

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478
56Ni	111 d	${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^* \rightarrow {}^{56}\text{Fe}^{*+}e^+$	847, 1238
⁵⁷ Ni	390 d	$^{57}Co \rightarrow ^{57}Fe^*$	122
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^{*}+e^{+}$	1275
⁴⁴ Ti	89 y	$^{44}\text{Ti}\rightarrow^{44}\text{Sc}*\rightarrow^{44}\text{Ca}*+e^+$	1157, 78, 68
26 Al	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	$^{60}\text{Fe} \rightarrow ^{60}\text{Co}^*$	1173, 1332

²²Na and ²⁶Al for a set of progenitor models

- ²⁶Al yields are modified by factors beween 1.4 and 2.2
- ²²Na increased by factors up to 2.9

MICRA 2015

Production channels for ²⁶ AI

Galactic ²⁶Al emission with INTEGRAL SPI

Bouchet et al. (2015)

- Different mechanisms:
 - enhancement of
 - p-captures
 - charged-current channel
 - neutral-current channels

Production of ^{26}Al for a 15 M_{\odot} progenitor

Production of ^{26}Al for a 15 M_{\odot} progenitor

Production of ^{26}Al for a 15 M_{\odot} progenitor

MICRA 2015

Neutrino Nucleosynthesis

Production of ²²Na

- Different mechanisms:
 - indirect enhancement of p-captures
 - direct charged-current channel
 - direct neutral-current channels
- Balance of the different channels is sensitive to stellar structure and neutrino spectra

Production of ^{22}Na for 15 M_{\odot} progenitor

• Updated ν -spectra increase the relative importance of CC reactions

Isotopic ratios from meteorites

- Meteorites contain material that represents the composition of the early solar system (ESS) and the pre-solar molecular cloud
- A combination of nucleosynthesis events is necessary to reproduce the measured composition
- Isotopic ratios can be determined with high precision

A. Sieverding, L. Huther, G. Martínez-Pinedo, A. Heger

Wasserburg et al (2006)

Production of ⁹²Nb

92 Nb/ 93 Nb ratio in the early solar system (ESS)

• Assuming uniform production over 10 Gyr

Short-lived radionuclides from a recent event

 Short-lived radioactive isotopes (¹⁰Be, ²⁶Al, ³⁶Cl, ⁴¹Ca, ⁵³Mn, ⁶⁰Fe) in the ESS could explained by a recent low-mass supernova

• In the Si-shell, the production of ³⁶Cl is increased by ³⁶Ar($\bar{\nu}_e, e^+$)

Short-lived radioactive isotopes

• A single event needs to reproduce the abundances of all relevant isotopes at the same time

Summary

- \blacktriangleright ν nucleosynthesis affects the abundances of radioactive nuclei
- Important for the comparison of high-precision observations (meteorites and γ-ray astronomy) with predicitons from simulations
- Uncertainties in neutrino spectra add to the uncertainties of nucleosynthesis calculations, that can be comparable to the uncertainties due to nuclear physics.

Summary

- \blacktriangleright ν nucleosynthesis affects the abundances of radioactive nuclei
- Important for the comparison of high-precision observations (meteorites and γ-ray astronomy) with predicitons from simulations
- Uncertainties in neutrino spectra add to the uncertainties of nucleosynthesis calculations, that can be comparable to the uncertainties due to nuclear physics.
- Outlook
 - Fallback and innermost ejecta
 - Non-thermal and time-dependent ν-spectra
 - Effects of neutrino oscillations

Thank you, for your attention

MICRA 2015

Neutrino Nucleosynthesis