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Introduction

• Gravitational waves from neutron-star and black-hole binaries 
carry valuable information on their physical properties and probe 
physics inaccessible to the laboratory.

• Although development of black-hole gravitational wave 
templates in the past decade has been revolutionary, the 
corresponding work for double neutron-star systems has lagged.

• Recent progress by groups in Kyoto (SACRA), Caltech-Cornell-
CITA-AEI (SpEC), Frankfurt (Whisky), Jena (BAM), Illinois, etc.

• The Valencia scheme has been a workhorse for hydro in 
numerical relativity…
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Introduction

• Gravitational waves from neutron-star and black-hole binaries 
carry valuable information on their physical properties and probe 
physics inaccessible to the laboratory.

• Although development of black-hole gravitational wave 
templates in the past decade has been revolutionary, the 
corresponding work for double neutron-star systems has lagged.

• Recent progress by groups in Kyoto (SACRA), Caltech-Cornell-
CITA-AEI (SpEC), Frankfurt (Whisky), Jena (BAM), Illinois, etc.

• The Valencia scheme has been a workhorse for hydro in 
numerical relativity, but considering alternative hydrodynamic 
schemes can lead to further progress…

• Hamiltonian methods have been used in all areas of physics but 
have seen little use in hydrodynamics 



Introduction

• Constructing a Hamiltonian requires a variational principle
• Carter and Lichnerowicz have described barotropic fluid motion 

via classical variational principles as conformally geodesic
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Introduction

• Constructing a Hamiltonian requires a variational principle
• Carter and Lichnerowicz have described barotropic fluid motion 

via classical variational principles as conformally geodesic

• Moreover, Kelvin’s circulation theorem 

implies that initially irrotational flows remain irrotational.
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Introduction

• Constructing a Hamiltonian requires a variational principle
• Carter and Lichnerowicz have described barotropic fluid motion 

via classical variational principles as conformally geodesic

• Moreover, Kelvin’s circulation theorem 

implies that initially irrotational flows remain irrotational.

• Applied to numerical relativity, these concepts lead to novel 
Hamiltonian or Hamilton-Jacobi schemes for evolving 
relativistic fluid flows, applicable to binary neutron star inspiral.
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Carter-Lichnerowicz variational principles
for barotropic flows

• Carter’s Lagrangian:

• Canonical momentum:

• Carter’s superHamiltonian:
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Carter-Lichnerowicz variational principles
for barotropic flows

• Carter’s Lagrangian:

• Canonical momentum:

• Carter’s superHamiltonian:

• Euler equation in Carter-Lichnerowicz form:

2 2
u h

h h
g ua b
ab= - = -

£ 0 (Euler-Lagrange)
u

dp
p

d x
a

a aat
¶

- = - =
¶


 

;p hu
ua aa

¶
= =

¶
 dx

u
d

a
a

t
=

( ) 0 (Hamilton)
dp

u p p
d x

ba
b a a b aat

¶
+ =  - + =

¶


 

1
0

2 2
h

p u g p p
h

a ab
a a b= == - + 



Constrained Hamiltonian approach
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Constrained Hamiltonian approach
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Constrained Hamiltonian approach
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Constrained Hamiltonian approach
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Constrained Hamiltonian:       

Euler-Lagrange equation:                

Hamilton equation:     
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Conservation of circulation
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• The most interesting feature of Kelvin's theorem is that, since its derivation did not 
depend on the metric, it is exact in time-dependent spacetimes, with 
gravitational  waves carrying energy and angular momentum away from a 
system. In particular, oscillating stars and radiating binaries, if modeled as 
barotropic fluids with no viscosity or dissipation other than gravitational radiation 
exactly conserve circulation

• Corollary: flows initially irrotational remain irrotational.
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Irrotational hydrodynamics
Irrotational flow:            0

Hamilton equation:         0

Hamilton-Jacobi equation:        0

Example: In the dust limit on a Minkowsky background, on
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ains a relativistic Burgers equation:
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lation of the Euler equation in Minkowski and Schwarzschild charts. The fact that 

these are Hamilton equations and can be obtained covariantly for arbitrary spacetimes is unnoticed.

Solutions to HJ equation are NOT unique. 

Nevertheless, 'viscosity' solutions to HJ equation are unique.





Irrotational hydrodynamics
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Irrotational hydrodynamics
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Irrotational hydrodynamics
Irrotational flow:            0

Hamilton equation:         0

Hamilton-Jacobi equation:        0

For barotropic fluids, the above equation is coupled to the c
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Conclusions
Notable features:

• Unlike Valencia, recovery of primitives from conservatives requires no atmosphere: ui is 
recovered via dividing pi=hui by specific enthalpy h which is 1 at the surface (no division 
by zero)

• Like Valencia, strong hyperbolicity is lost when cs = 0: eigenbasis not complete, system 
becomes weakly hyperbolic  instability on surface

• Instead of artificial atmosphere, can use crust EOS with small but nonzero cs near 
surface: sound speed in a realistic NS crust (outer 1 km) cs ~ 0.05
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Sound speed profile of a TOV star
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Conclusions
Notable features:

• Unlike Valencia, recovery of primitives from conservatives does requires no atmosphere:
ui is recovered via dividing pi=hui by specific enthalpy h which is 1 at the surface (no division 

by zero)
• Like Valencia, strong hyperbolicity is lost when cs = 0: eigenbasis not complete, system 

becomes weakly hyperbolic  instability on surface
• Instead of artificial atmosphere, can use crust EOS with small but nonzero cs near 

surface: sound speed in a realistic NS crust (outer 1 km) cs ~ 0.05. Then, extrapolating 
the EOS to the exterior (h<1) allows one to evolve smooth fields and obtain pointwise
convergence on the surface, which is unattainable with an artificial atmosphere.

• Scheme may be combined with symplectic integration or constraint damping methods 
that preserve symplecic structure and circulation 

• SPH schemes based on the Lagrangian or Hamiltonian formulation possible
• Extension beyond irrotational flows also possible

Reference
C. Markakis, arXiv:1410.7777
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