Neutrino-Driven Convection in Stalled Supernova Cores

MICRA, Stockholm 2015

David Radice¹

¹ Walter Burke Fellow, TAPIR, California Institute of Technology

Collaborators: E.Abdikamalov, S.Couch, R.Haas, C.Ott, E.Schnetter

The Supernova Problem

Cassiopeia-A

Core-Collapse Supernovae:

- End of massive stars
- Birthplace of heavy elements, neutron stars, black holes ...
- Regulate star formation

Problem: how do they explode?

Shock Revival by Neutrinos

From Janka 2001

The Roles of Turbulence

Difficult to simulate!

See talk by Takiwaki

Resolution Dependance

ULR	3.78 km
LR	1.89 km
MR	1.42 km
IR	1.24 km
HR	1.06 km

Resolutions

From Abdikamalov et al. 2015

Explosion more difficult at higher resolution!

Turbulent Energy Spectrum

Open Questions

- When is the resolution good enough?
- How does neutrino-driven convection work?
- What is the main role of turbulence?

Our approach: local and semi-global simulations

Local Simulations

- Periodic box
- Anisotropic
- Mildly compressible
- Compare different methods

PPM+HLLC, N=512³, Vorticity

Energy Cascade (I)

- Energy injection scale
- Inertial range
- Bottleneck
- Dissipation range

PPM+HLLC, $N = 512^3$

Energy Cascade (II)

- Global simulations ~ 64³
 bottleneck dominated!
- 2x: start to converge
- 8x: inertial range

Semi-Global Simulations

- Local simulations: instructive, but very simplified
- Global simulations: expensive, more difficult to interpret

Semi-global simulations: initial data

Semi-global simulations

- Stationary initial conditions
- 90° 3D wedge domain
- Simplified neutrino cooling/ heating
- Simplified nuclear dissociation treatment

Global Dynamics (I)

Shock radius

Global Dynamics (II)

- Low resolution simulations easier to explode
- Good convergence of large scale quantities
- Caveat: convergence is going to be worse for nearly-critical models

Turbulent Cascade

Turbulent energy spectra

Turbulent Convection

Turbulent energy fluxes

Turbulent Pressure

Turbulent pressure

Conclusions

- Convergence: large scales converge even at moderate resolution ($\Delta \vartheta \leq 2^{\circ}$)
- Turbulence is only resolved at very high resolutions ($\Delta \vartheta \leq 0.1^{\circ}$)
- Kolmogorov spectrum
- Turbulence pressure dominates over energy transfer

Initial Data

Stationary initial data