

Induced interactions and lattice instability in the inner crust of neutron stars

Dmitry Kobyakov

«Microphysics In Computational Relativistic Astrophysics», AlbaNova University Centre, Stockholm, Sweden 17 august 2015

IN MEMORY OF MY FRIEND AND TEACHER VITALIY BYCHKOV 1968-2015

Work done with

Modes and structure of the crust: D. N. Kobyakov & C. J. Pethick. *Collective modes of crust* – PRC 87, 055803 (2013); *Lattice instability* – PRL 112, 112504 (2014);

Physics of multicomponent superfluid phase D. N. Kobyakov, L. Samuelsson, E. Lundh, M. Marklund, V. Bychkov & A. Brandenburg.

Quantum hydrodynamics of cold nuclear matter – 2015, unp.

Motivation:

Importance of induced interactions

- Superfluid gaps
- Collective hydro-elastic mode velocities in the inner crust
- Collective hydrodynamic mode velocities in the outer core
- Lattice structure and role of the neutron liquid *in the inner crust*
- Low-temperature thermal, transport, rotational and magnetic properties

This physics is crucial in the following applications

- □ Nuclear structure (especially beyond the neutron drip density)
- □ Models of cooling (especially in low-mass x-ray binaries)
- □ Models of quasiperiodic oscillations after x-ray flares
- □ Modes in magnetars
- □ Models of pulsar glitches

Examples of induced interactions in neutron stars

- Neutron-proton coupling renormalizes masses of the Nambu-Goldstone (the Bogoliubov-Anderson) modes both *in the inner crust and in the core*
- Renormalization of the relaxation time of the Cooper instability. (Neutron superfluid gap is reduced by the Gorkov-Melik-Barkhudarov corrections, but amplified by the neutron-phonon interaction *in the inner crust*)
- Proton superfluid gap is strongly influenced by the neutroninduced interactions in the core
- □ Coupling of superfluid neutrons to the magnetic field due to the neutron-proton coupling *in the core*

Plan

- 1. Induced interactions in physics
- 2. Dynamic effects of induced neutron-proton interactions in the core
- 3. Instability of the lattice in the crust
- 4. Remarks about numerical models of the crust: the shear modulus

Induced interactions in physics

Importance of induced interactions in physics

> Induced interactions change basic properties of particles

A simple physics example

• Interaction between the electrons in cold metals becomes attractive (electron-phonon induced interactions)

$$\Gamma_{\gamma\delta,\alpha\beta} = \delta_{\alpha\gamma}\delta_{\beta\delta} \left(-\frac{i\omega}{\rho}\right)^2 \frac{\rho k^2}{\omega^2 - u^2 k^2 + i0} \qquad \begin{array}{c} p_1 & p_1 - K \\ \hline K \\ \text{If for both electrons } |\varepsilon - \varepsilon_F| \ll \omega_D, \\ \text{then } \Gamma_{\gamma\delta,\alpha\beta} > 0 \text{ (attraction)} \qquad P_2 & p_2 + K \end{array}$$

Dynamic effects of neutron-proton induced interactions in the core

Effective field theory

- We need an effective field theory to describe macroscopic phenomena related to superfluidity
- Once the effective degrees of freedom are well defined, the theory may be formulated in terms of these degrees
- The most fundamental principle the least action principle
- Parameters of such phenomenological theory are chosen so to match the basic properties to properties of the real material

Entrainment in the core

- The Fermi-spheres of neutrons and protons induce kinetic energy contributions \propto terms of 2 order in ∇ and of 4 order in ψ
- Superfluid entrainment found in the literature :

 $+\lambda_{1}(\mathscr{D}\psi_{1})(\nabla\psi_{2}^{*})\psi_{1}^{*}\psi_{2} +\lambda_{2}(\mathscr{D}^{*}\psi_{1}^{*})(\nabla\psi_{2})\psi_{1}\psi_{2}^{*} \\ +\lambda_{3}(\mathscr{D}\psi_{1})(\nabla\psi_{2})\psi_{1}^{*}\psi_{2}^{*} +\lambda_{4}(\mathscr{D}^{*}\psi_{1}^{*})(\nabla\psi_{2}^{*})\psi_{1}\psi_{2}.$ (A1)

- Since $|\psi|^2$ has a meaning of superfluid number density, and since the entrainment *must* be Galilean-invariant, therefore Eq. (A1) misses few terms (of the form $\sim |\psi_1|^2 |\nabla \psi_2|^2$)
- This little detail is crucial for formulation of the effective field theory of a superfluid mixture

Effective field theory of superfluidsuperconductor mixture

 Total energy of superfluid mixture and electromagnetic field (Kobyakov, Samuelsson, Lundh, Marklund, Bychkov & Brandenburg 2015):

$$E_s[\psi_p, \psi_n, \psi_p^*, \psi_n^*, \mathbf{A}] = -\sum_{a,b=0\dots3} \left[\frac{1}{16\pi} (\partial_a A_b - \partial_b A_a)^2 \right]$$

$$+\frac{\hbar^2}{2m}\left|\mathscr{D}\psi_p\right|^2 + \frac{\hbar^2}{2m}\left|\nabla\psi_n\right|^2 - \sum_{\alpha=p,n}a_\alpha|\psi_\alpha|^2 + C\left[|\psi_p|,|\psi_n|\right] \\ -\frac{1}{2}\rho_{np}\left(\frac{\hbar}{2im}\nabla\ln\frac{\psi_p\psi_n^*}{\psi_p^*\psi_n} - \frac{2e}{mc}\mathbf{A}\right)^2,$$

 «Entrainment parameter» - non-diagonal element of Andreev-Bashkin matrix of superfluid densities (Chamel & Haensel 2006)

$$\rho_{np} = \tilde{\alpha}_{np} n_p n_n.$$

Dynamic effects of induced neutron-proton interactions

- The fractional quantum of magnetic flux (Alpar, Langer & Sauls 1984; Kobyakov *et al.* 2015):
- Relaxation of relative motion of the electrons and the core of neutron vortices (Alpar, Langer, Sauls 1984)
- Renormalization of masses of the Nambu-Goldstone boson, or sound speeds (Kobyakov *et al.* 2015)

$$\Phi_{q_p,q_n} = \frac{\pi\hbar c}{e} \left(q_p + \frac{\rho_{np}^0}{\rho_{pp}^0} q_n \right)$$

$$\tau_{relax} \sim 1 \, [sec]$$

Equation of state of nuclear matter for calculation of $\frac{\partial^2 E}{\partial n_\alpha \partial n_\beta}$

- EOS of uniform nuclear matter based on chiral effective field theory and observations of neutron stars (Hebeler, Lattimer, Pethick & Schwenk 2013)
- Check the behaviour at low densities (Kobyakov *et al.* 2015): matching to the Lattimer-Swesty EOS (Kobyakov & Pethick 2013) and the effective Thomas-Fermi theory with shell corrections (Chamel

First problem: dissipation

• Dissipation on a simple example

$$i\partial_t \psi(\mathbf{r}) = -\nabla^2 \psi(\mathbf{r}) + g |\psi(\mathbf{r})|^2 \psi(\mathbf{r})$$

$$i\partial_t \psi(\mathbf{k}) = k^2 \psi(\mathbf{k}) + \frac{g}{V^2} \sum_{\mathbf{k}_1, \mathbf{k}_2} \psi(\mathbf{k}_1) \psi(\mathbf{k}_2)^* \psi(\mathbf{k} - \mathbf{k}_1 + \mathbf{k}_2)$$

• Solution: Pitaevskii (1958), Tsubota, Kamamatsu & Ueda (2002), Kobayashi & Tsubota (2005):

$$i \rightarrow [i - \gamma(k)]$$

• Nuclear superfluids, Kobyakov et al. 2015 for T = 0+:

$$[i - \gamma_p(k)] \partial_t \psi_p = \dots$$
$$[i - \gamma_n(k)] \partial_t \psi_n = \dots$$

15

Second problem: vortex structure

- Problem: Vortex core is too small, if we require the non-linear Schrödinger equation to give correct sound velocities
- ➢ In other words: the Nambu-Goldstone boson is too heavy
- Our solution: renormalize the NG boson mass spectrally make it small for Fourier harmonics describing the core structure

$$g \rightarrow g(k)$$

$$g(k) = g_0 - (g_0 - g_\Delta)\theta(k - 1)$$

 $\frac{g}{V^2}\sum_{\mathbf{k}_1,\mathbf{k}_2}\psi(\mathbf{k}_1)\psi(\mathbf{k}_2)^*\psi(\mathbf{k}-\mathbf{k}_1+\mathbf{k}_2) \rightarrow$

$$\frac{g(k)}{V^2} \sum_{\mathbf{k}_1, \mathbf{k}_2} \psi(\mathbf{k}_1) \psi(\mathbf{k}_2)^* \psi(\mathbf{k} - \mathbf{k}_1 + \mathbf{k}_2)$$

Increasing the core size by the NG-boson renormalization: numerical evidence

We solve the equations for a single vortex numerically, using the steepest descent method

$$g(k) = g_0 - (g_0 - g_\Delta)\theta(k-1)$$

Instability of the lattice in the crust

Theoretical description of the lattice

- Elastic energy: $\delta^2 F = \frac{1}{2} \sum_{i,j,k,l} C_{ijkl} u_{ij} u_{kl}$
- Cubic crystal:

 $\delta^2 F = \frac{1}{2} C_{11} (u_{11}^2 + u_{22}^2 + u_{33}^2) + C_{12} (u_{11}u_{22} + u_{11}u_{33} + u_{22}u_{33}) + 2C_{44} (u_{12}^2 + u_{13}^2 + u_{23}^2)$

19

- Stiffness of the crust material is very anisotropic (next slide)
- *Isotropic solid* (crystallites are small and oriented randomly): $\delta^2 F = \frac{1}{2} \sum_{i,j,k,l} \left[K_{\text{eff}} \delta_{ij} \delta_{kl} + \mu_{\text{eff}} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3} \delta_{ij} \delta_{kl} \right) \right] u_{ij} u_{kl}$

Elastic anisotropy of crystals

• Zener ratio $A = c_{44}/c'$ measures anisotropy in cubic crystals (A=1 – isotropic)

Crystal	A (Zener ratio)
Silver chloride	0.52
Aluminium	1.22
Silver	3.01
Lithium	8.52

- Coulomb crystal (Fuchs, 1936): $c_{44}/c' \approx 7.4$
- δ -Plutonium: $c_{44}/c' \approx 7.3$

FIG. 1. Graphical representation of the elastic anisotropy for cubic crystals.

Isotropic model of the inner crust

• Continuity equations (linearized)

 $\partial_t \delta n_p + n_p \nabla \boldsymbol{\nu}_p = \mathbf{0},$

 $\partial_t \delta n_n + n_n^s \nabla \boldsymbol{v}_n + n_n^n \nabla \boldsymbol{v}_p = 0.$

• Euler equations (assuming that solid is isotropic)

$$m\partial_{t}\boldsymbol{v}_{n} + \nabla (E_{nn}\delta n_{n} + E_{np}\delta n_{p}) = 0,$$

$$m(n_{p} + n_{n}^{n})\partial_{t}\boldsymbol{v}_{p} + n_{n}^{n}\nabla\mu_{n} + n_{p}\nabla(\mu_{p} + \mu_{e}) = 0,$$

Isotropic (pressure)

$$-\frac{4}{3}S\nabla(\operatorname{div}\boldsymbol{u}) + S\nabla\times(\operatorname{rot}\boldsymbol{u}) = 0,$$

$$\operatorname{div}\boldsymbol{u} = -\frac{\delta n_{p}}{n_{p}}.$$

Induced interactions in the inner crust

• Stability condition is $\delta^2 E > 0$, where

$$\begin{split} \delta^{2}E &= \frac{1}{2}g_{pp} \,\delta n_{p}^{2} + g_{np} \,\delta n_{p} \delta n_{n} + \frac{1}{2}g_{nn} \delta n_{n}^{2} \\ \delta^{2}E &= \frac{1}{2}\frac{\Delta_{g}}{g_{nn}} \,\delta n_{p}^{2} + \frac{1}{2}g_{nn} \left(\delta n_{n} + \frac{g_{np}}{g_{nn}} \,\delta n_{p}\right)^{2} \\ \text{Equivalently:} \quad E_{nn} > 0 \ , E_{pp} - \frac{E_{np}^{2}}{E_{nn}} = \frac{\partial \mu_{p}}{\partial n_{p}} \Big|_{\mu_{n}} > 0. \end{split}$$

- Long-wavelength perturbations are stable, since electrons provide a large positive contribution to the effective proton-proton interaction.
- Effective proton-proton interaction is modified by the screening corrections: $\partial \mu_e k^2$

$$E_{pp}(k) = E_{pp} - \frac{\partial \mu_e}{\partial n_e} \frac{\kappa}{k_{\rm FT}^2 + k^2}$$

Dispersion relation (with screening corrections) for the in-phase mode

This suggests: The most unstable mode lies at the edge of the 1st Brillouin zone. Now we need to find direction of that mode.

Anisotropic model of the inner crust

- Crystal has cubic symmetry, and the elastic properties are anisotropic.
- Deformation vector field u(r).
- Deformation tensor field $u_{ij} = \partial u_i(\mathbf{r}) / \partial r_j$.
- Energy of deformation of a cubic crystal to the 2^{nd} order $(C_{ijkl} \equiv \lambda_{ijkl})$:

$$\delta F = \frac{1}{2} \lambda_{1111} \left(u_{11}^2 + u_{22}^2 + u_{33}^2 \right) + \lambda_{1122} \left(u_{11} u_{22} + u_{11} u_{33} + u_{22} u_{33} \right) \\ + 2 \lambda_{1212} \left(u_{12}^2 + u_{13}^2 + u_{23}^2 \right)$$

Stability of crystal

• General stability condition: positive definite dynamic matrix

$$\det\left(\sum_{b,c=1,2,3}\lambda_{abcd}k_bk_c\right) > 0$$

• Minimizing the *Gibbs free energy* of a crystal under external pressure is convenient because λ 's retain the Voigt symmetry:

$$\lambda_{1212} = \lambda_{1221}$$

The most unstable direction

• Keeping constant the shear modulus $S = (C_{11} - C_{12})/2$ and the coefficient $C_{44} = \lambda_{1212}$, we decrease the bulk modulus $B = (C_{11} + 2C_{12})/3$ and find:

• This result was obtained analytically for $C_{11} - C_{12} > 2C_{44}$ by J. Cahn, *Acta Metallurgica* **10**, 179 (1962).

Remarks about numerical models of the crust: The shear modulus (3 slides)

Single crystals and polycrystals

- Hallite (NaCl): cubic
- Lithium: cubic ↓

Averaging the crystalline orientations

- The task is to express the effective moduli of isotropic polycrystalline medium via moduli of pure crystal
- Assume the medium is composed of randomly oriented crystallites, and average the Hooke's law

 u_{ii}

$$\hat{\sigma} = \hat{C}\hat{u} \iff \hat{C}^{-1}\hat{\sigma} = \hat{u}$$

$$\langle \hat{\sigma} \rangle = \langle \hat{C}\hat{u} \rangle \quad \text{or} \quad \langle \hat{C}^{-1}\hat{\sigma} \rangle = \langle \hat{u} \rangle$$
• **Reminder:** Stiffness tensor
Deformation tensor (strain) Stress tensor

$$= \frac{1}{2} [\partial_i u_j + \partial_j u_i + (\partial_i u_k)(\partial_k u_j)]; \quad \sigma = \frac{\delta F}{\delta u}; \quad \sigma_{ij} = C_{ijkl} u_{kl};$$
Energy perturbation

$$\delta^2 F = \frac{1}{2} \hat{u} \cdot \hat{C}\hat{u} = \frac{1}{2} \hat{u} \cdot \hat{\sigma}$$

Our results for the shear modulus

- Self-consistent model works extremely well in the laboratory.
- For dense polycrystalline matter *K* is much larger than *c'* and c_{44} , and we obtain $\mu_{eff} = \frac{c_{44}}{6} \left(1 + \sqrt{1 + 24c'/c_{44}}\right)$.
- Elastic moduli of polycrystalline high-density Coulomb crystal (*neutron star inner crust*) in units $\frac{n_i Z^2 e^2}{a} \sim 10^{30} [\text{erg cm}^{-3}]$

Conclusions

- Induced interactions are important
- We calculate collective modes in the outer core using the effective field theory of a superfluid mixture
- We introduce phenomenological *spectral renormalization of the Nambu-Goldstone boson mass* to deal with small length scales
- ...and phenomenological dissipation to deal with dynamics, in analogy with terrestrial superfluids and superconductors for T = 0+
- We calculate collective modes in the inner crust
- At short wavelength the induced interactions render the lattice unstable
- We find direction of the most unstable mode, which signals a *structural phase transition* in the lattice

Open questions

- What is the equilibrium structure of the lattice?
- How big are crystal domains the crystallites?
- What is the superfluid neutron density in the inner crust as function of wavenumber?
- What are the phenomenological damping parameters numerically?
- What are the NG boson mass renormalization parameters numerically?