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Motivation: 

Importance of induced interactions
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• Superfluid gaps

• Collective hydro-elastic mode velocities in the inner crust

• Collective hydrodynamic mode velocities in the outer core

• Lattice structure and role of the neutron liquid in the inner crust

• Low-temperature thermal, transport, rotational and magnetic 

properties

This physics is crucial in the following applications

 Nuclear structure (especially beyond the neutron drip density)

 Models of cooling (especially in low-mass x-ray binaries)

 Models of quasiperiodic oscillations after x-ray flares 

 Modes in magnetars

 Models of pulsar glitches



Examples of induced interactions in 

neutron stars
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 Neutron-proton coupling renormalizes masses of the Nambu-

Goldstone (the Bogoliubov-Anderson) modes both in the inner 

crust and in the core

 Renormalization of the relaxation time of the Cooper instability. 

(Neutron superfluid gap is reduced by the Gorkov-Melik-

Barkhudarov corrections, but amplified by the neutron-phonon 

interaction in the inner crust)

 Proton superfluid gap is strongly influenced by the neutron-

induced interactions in the core

 Coupling of superfluid neutrons to the magnetic field due to the 

neutron-proton coupling in the core



Plan
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1. Induced interactions in physics

2. Dynamic effects of induced neutron-proton interactions in the 

core

3. Instability of the lattice in the crust

4. Remarks about numerical models of the crust: the shear 

modulus



Induced interactions in physics



Importance of induced interactions in 

physics
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 Induced interactions change basic properties of particles

A simple physics example

• Interaction between the electrons in cold metals becomes 

attractive (electron-phonon induced interactions)

Γ𝛾𝛿,𝛼𝛽 = 𝛿𝛼𝛾𝛿𝛽𝛿 −
𝑖𝜔

𝜌

2
𝜌𝑘2

𝜔2 − 𝑢2𝑘2 + 𝑖0

If for both electrons 𝜀 − 𝜀𝐹 ≪ 𝜔𝐷, 

then Γ𝛾𝛿,𝛼𝛽 > 0 (attraction)



Dynamic effects of neutron-proton 
induced interactions in the core



Effective field theory
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• We need an effective field theory to describe macroscopic 

phenomena related to superfluidity

• Once the effective degrees of freedom are well defined, the 

theory may be formulated in terms of these degrees

• The most fundamental principle – the least action principle

• Parameters of such phenomenological theory are chosen so to 

match the basic properties to properties of the real material



Entrainment in the core
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• The Fermi-spheres of neutrons and protons induce kinetic energy 

contributions ∝ terms of 2 order in 𝛁 and of 4 order in 𝜓
• Superfluid entrainment found in the literature :

• Since 𝜓 2 has a meaning of superfluid number density, and since 

the entrainment must be Galilean-invariant, therefore Eq. (A1) 

misses few terms (of the form ∼ 𝜓1
2 𝛁𝜓2

2)

• This little detail is crucial for formulation of the effective field 

theory of a superfluid mixture



Effective field theory of superfluid-

superconductor mixture
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• Total energy of superfluid mixture and electromagnetic field 

(Kobyakov, Samuelsson, Lundh, Marklund, Bychkov & 

Brandenburg 2015):

• «Entrainment parameter» - non-diagonal element of Andreev-

Bashkin matrix of superfluid densities (Chamel & Haensel 2006)



Dynamic effects of induced 

neutron-proton interactions
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 The fractional quantum of magnetic 

flux (Alpar, Langer & Sauls 1984; 

Kobyakov et al. 2015):

 Relaxation of relative motion of the 

electrons and the core of neutron 

vortices (Alpar, Langer, Sauls 1984)

 Renormalization of masses of the 

Nambu-Goldstone boson, or sound 

speeds (Kobyakov et al. 2015)

𝜏𝑟𝑒𝑙𝑎𝑥 ∼ 1 [sec]



Equation of state of nuclear matter for 

calculation of 
𝜕2𝐸

𝜕𝑛𝛼𝜕𝑛𝛽
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 EOS of uniform nuclear matter based on chiral effective field theory 

and observations of neutron stars (Hebeler, Lattimer, Pethick & 

Schwenk 2013) 

 Check the behaviour at low densities (Kobyakov et al. 2015): 

matching to the Lattimer-Swesty EOS (Kobyakov & Pethick 2013) 

and the effective Thomas-Fermi theory with shell corrections (Chamel 

2013)



First problem: dissipation

15

• Dissipation on a simple example

• Solution: Pitaevskii (1958), Tsubota, Kamamatsu & Ueda 

(2002), Kobayashi & Tsubota (2005): 

• Nuclear superfluids, Kobyakov et al. 2015 for 𝑇 = 0+ :



Second problem: vortex structure
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 Problem: Vortex core is too small, if we require the non-linear 

Schrödinger equation to give correct sound velocities 

 In other words: the Nambu-Goldstone boson is too heavy

 Our solution: renormalize the NG boson mass spectrally -

make it small for Fourier harmonics describing the core structure



Increasing the core size by the NG-boson 

renormalization: numerical evidence
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 We solve the equations for a single vortex numerically, using the 

steepest descent method



Instability of the lattice in the crust
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Theoretical description of the lattice

• Elastic energy: 𝛿2𝐹 =
1

2
 

𝑖,𝑗,𝑘,𝑙

𝐶𝑖𝑗𝑘𝑙 𝑢𝑖𝑗𝑢𝑘𝑙

𝛿2𝐹 =
1

2
𝐶11 𝑢11

2 + 𝑢22
2 + 𝑢33

2 + 𝐶12 𝑢11𝑢22 + 𝑢11𝑢33 + 𝑢22𝑢33 + 2𝐶44 𝑢12
2 + 𝑢13

2 + 𝑢23
2

• Cubic crystal: 

• Isotropic solid (crystallites are small and oriented randomly): 

𝛿2𝐹 =
1

2
 

𝑖,𝑗,𝑘,𝑙

𝐾eff𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇eff 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −
2

3
𝛿𝑖𝑗𝛿𝑘𝑙 𝑢𝑖𝑗𝑢𝑘𝑙

• Stiffness of the crust material is very anisotropic (next slide) 



Elastic anisotropy of crystals

𝑐44/c′ ≈ 7.4

𝑐44/c′ ≈ 7.3

• Coulomb crystal 

(Fuchs, 1936):

• Zener ratio A = 𝑐44/c′

measures anisotropy in cubic 

crystals (A=1 – isotropic)

• 𝛿-Plutonium:

Crystal A (Zener ratio)

Silver chloride 0.52

Aluminium 1.22

Silver 3.01

Lithium 8.52



Isotropic model of the inner crust
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• Continuity equations (linearized)

• Euler equations (assuming that solid is isotropic)

Isotropic (pressure)

Shear



Induced interactions in the inner 

crust
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• Stability condition is 𝛿2𝐸 > 0, where  

• Equivalently:                   ,                                                  .

• Long-wavelength perturbations are stable, since electrons provide a 

large positive contribution to the effective proton-proton interaction.

• Effective proton-proton interaction is modified by the screening 

corrections:



Dispersion relation (with screening 

corrections) for the in-phase mode
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This suggests: The most unstable mode lies at the edge of the 1st

Brillouin zone. Now we need to find direction of that mode.



Anisotropic model of the inner crust

• Crystal has cubic symmetry, and the elastic properties are 

anisotropic.

• Deformation vector field           . 

• Deformation tensor field                                . 

• Energy of deformation of a cubic crystal to the  2nd order 

(𝐶𝑖𝑗𝑘𝑙 ≡ 𝜆𝑖𝑗𝑘𝑙):
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Stability of crystal

• General stability condition: positive definite dynamic matrix

• Minimizing the Gibbs free energy of a crystal under external 

pressure is convenient because λ’s retain the Voigt symmetry: 
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• Keeping constant the shear modulus 𝑆 = 𝐶11 − 𝐶12 /2 and the 

coefficient 𝐶44 = 𝜆1212 , we decrease the bulk modulus 𝐵 =
𝐶11 + 2𝐶12 /3 and find:

• This result was obtained analytically for                                  by J. 

Cahn, Acta Metallurgica 10, 179 (1962).

The most unstable direction

26



Remarks about numerical models of the crust:

The shear modulus

(3 slides)
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Single crystals and polycrystals
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• Hallite (NaCl): cubic

• Lithium: cubic

Crystal Polycrystal



Averaging the crystalline orientations

 𝜎 =   𝐶  𝑢 ⇔   𝐶−1  𝜎 =  𝑢

𝑢𝑖𝑗 =
1

2
𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑘 𝜕𝑘𝑢𝑗 ; 𝜎 =

𝛿𝐹

𝛿𝑢
; 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘𝑙 ;

𝛿2𝐹 =
1

2
 𝑢 ⋅   𝐶  𝑢 =

1

2
 𝑢 ⋅  𝜎

• Reminder:

 𝜎 =   𝐶  𝑢 or   𝐶−1  𝜎 =  𝑢

• The task is to express the effective moduli of isotropic 

polycrystalline medium via moduli of pure crystal 

• Assume the medium is composed of randomly oriented 

crystallites, and average the Hooke’s law

Deformation tensor (strain) Stress tensor

Energy perturbation

Stiffness tensor



Our results for the shear modulus

 Self-consistent model works extremely well in the laboratory.

 For dense polycrystalline matter 𝐾 is much larger than 𝑐′ and 𝑐44, 

and we obtain

 Elastic moduli of polycrystalline high-density Coulomb crystal 

(neutron star inner crust) in units 
𝑛𝑖𝑍

2𝑒2

𝑎
~1030 erg cm−3

𝑐′ = 0.0997
𝑐44 = 0.7424
𝜇𝑉 = 0.4852
𝜇𝑅 = 0.2071
𝜇eff = 0.3462

𝜇𝑒𝑓𝑓 =
𝑐44

6
1 + 1 + 24𝑐′/𝑐44 .



Conclusions

• Induced interactions are important

• We calculate collective modes in the outer core using the effective 

field theory of a superfluid mixture

• We introduce phenomenological spectral renormalization of the 

Nambu-Goldstone boson mass to deal with small length scales

• …and phenomenological dissipation to deal with dynamics, in 

analogy with terrestrial superfluids and superconductors for 𝑇 =
0+ 

• We calculate collective modes in the inner crust

• At short wavelength the induced interactions render the lattice 

unstable

• We find direction of the most unstable mode, which signals a 

structural phase transition in the lattice



Open questions

• What is the equilibrium structure of the lattice?

• How big are crystal domains – the crystallites?

• What is the superfluid neutron density in the inner 

crust as function of wavenumber?

• What are the phenomenological damping parameters 

numerically?

• What are the NG boson mass renormalization 

parameters numerically?


