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Core Collapse Supernovae

SN1987A

* CCSNe are one of the brightest astrophysical
phenomena in the modern universe.

* They are an important site for
nucleosynthesis and the mechanism for
unbinding elemental products of stellar
evolution and spreading them throughout
the galaxy. They help trigger star formation,
and are the source both neutron stars and
black holes.

* Why | like CCSNe is that they combine many : S e RN
different areas of theoretical, experimental, Anglo-Australian Observatory

and observational physics together in one
extreme environment. * Astrophysics * General Relativity

* Nuclear Physics * Computational Physics
* Neutrino Physics



Computational Codes

* First half of talk will be on nuGR1D, an open-source, general-
relativistic, spherically-symmetric, neutrino-radiation
hydrodynamics code for core-collapse & NulLib

Available at http://www.GR1Dcode.org;
EO ApJS 219 24 (2015)

 Multi-dimensional simulations performed with FLASH and with
FLASH + GR1D’s neutrino transport (EO & Couch in prep.)

Available at http://www.flash.uchicago.edu
(neutrino radiation not yet open source)



NnuGR1D

http://www.GR1Dcode.org
http://www.nulib.org

GR1Dv2 is a open-source general relativistic neutrino-radiation
hydrodynamics code for studying stellar collapse

Neutrino transport is a
moment formalism closed
via the M1 closure
(analytic Eddington tensor)

1D, full velocity
dependence, full GR.

Uses NulLib for neutrino
interactions
www.nulib.org

Compares well with
Boltzmann solution

'g 14 = e o __ =
2 1ol TS TR, i ST ]
< 1.2+ 1 ]
O = / 4 i
\f:Q 1+ . -—-—=GRI1D I ]
iV | {/ — —=-VERTEX 4 .
— 08 ¢/ ——— Agile-BOLTZTRAN]| ]

wn OfF=T—"— -
1 lllIlIlr 1 llllllll 1 lIIlllll 1 Illlllll L1 | I | | | | | L1
- LI ||||||| LI ||||||| LI ||l|||| 1 |||||||| 1 I::| LI I LI I I I:
04 g ]
& F + -
>~ 035 I ~
q':) E el — '—‘.;:‘_—_-3-—%
s 0.3 ]
- Y, ©< P
025_ coovonl v vl vl i I EEE S NN R

10° 10" 10% 10® 10 0 100 200
-3

P. [gem™] t - thounce [MS]

EO AplJS 219 24 (2015); Liebendoerfer et al. (2005)



NnuGR1D

* nuGR1D can go all the way to black hole formation in failed core-

collapse supernovae

2001j‘|| I I | 1 1 1 I 1 1 1 I 1 1 1 I 1 1 I I I_

: L, :

R ___'LVC A
:150__ ..... L, B
%) 5 ]
) i ]
S ]
= 100 == —
) i O
_ i 7 ]
> : / ~ | :
| 7 L~4008/s! :
(| LT T T e T ~

L i

|| 1 1 | 1 1 1 | 1 1 1 I 1 1 1 I 1 1 1 | I_

100 200 300 400
t- tbounce [IIlS]

500

LS220 EOS
40 M, from Woosley & Heger 2007



NnuGR1D

* nuGR1D can go all the way to black hole formation in failed core-
collapse supernovae
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A complete v signal

* Neutrino response in water, Liquid Argon, Scintillator with

SNOWG LOBES 20 — 3ékT Water‘
= 40kT Argon
10KT Scintillator

- Ignores collective oscillations
- Includes all SNOwWGLOBES channe
- Dominated by:
- Water: Inverse 3 decay
- Argon: v, capture on “°Ar >
- Scint: Inverse 3 decay
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Total Water NH/IH: 7609/4652
Total Argon NH/IH: 3944/4227
Total Scint. NH/IH: 3446/2245
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0,5 large enough to make MSW resonances adiabatic, small enough to ignore mixing
NH IH Dighe & Smirnov (2000)
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Electron Capture Rates

* As part of an upcoming update to NulLib, we have developed a suite
of electron capture rates calculations on individual heavy nuclei
 EOS of Hempel et al. (2012) & Steiner et al. (2013), for example,

predict full distribution of nuclei
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Electron Capture Rates

e Statistical and systematic variations in the electron capture rates
have modest effect on the collapse phase dynamics
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Electron Capture Rates

Statistical and systematic variations in the electron capture rates
have modest effect on the collapse phase dynamics
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Electron Capture Rates

* What nuclei are undergoing electron capture during collapse?
* These nuclei would be the most important to study experimentally in
future rare isotope facilities and theoretically to derive robust rates
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Computational Codes

* First half of talk will be on nuGR1D, an open-source, general-
relativistic, spherically-symmetric, neutrino-radiation
hydrodynamics code for core-collapse & Nulib

Available at http://www.GR1Dcode.org;
EO ApJS 219 24 (2015)

 Multi-dimensional simulations performed with FLASH and with
FLASH + GR1D’s neutrino transport (EO & Couch in prep.)

Available at http://www.flash.uchicago.edu
(neutrino radiation not yet open source)



s12, s15, s20, and s25 in FLASH

Oakridge selected 4 models to study in 2D

Woosley & Heger 2007: 12M_,, 15M_,,, 20M_,,, and 25M_ .
LS220 EOS, GR Effective Potential, MGFLD, Ray-by-Ray+
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s12, s15, s20, and s25 in FLASH

Oakridge selected 4 models to study in 2D

Woosley & Heger 2007: 12M_,,, 15M_ ., 20M_,
LS220 EOS, GR Effective Potential, MGFLD, Ray-by-Ray+
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s12, s15, s20, and s25 in FLASH

Oakridge selected 4 models to study in 2D

Woosley & Heger 2007: 12M_,, 15M_,,, 20M_,,, and 25M_ .
LS220 EOS, GR Effective Potential, MGFLD, Ray-by-Ray+
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s12, s15, s20, and s25 in FLASH

Oakridge selected 4 models to study in 2D

n

Woosley & Heger 2007: 12M_,,, 15M_, 20M_,, and 25M_,
LS220 EOS, GR Effective Potential, MGFLD, Ray-by-Ray+
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Multi-D Core-Collapse in FLASH

FLASH is a multiphysics, multiscale simulation code

Spherical (1D), Cylindrical (2D),
Cartesian (3D)

Mesh refinement gives effectively 0.5
degree resolution, smallest grid zone
500m

HLLC Riemann Solver with PPM
reconstruction, Unsplit Hydro
Neutrino Leakage scheme

Newtonian gravity

All in FLASH 4.3

movie

3D simulation with neutrino leakage
Couch & O’Connor (2014)



Multi-D M1 in FLASH ocnm
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FLASH is a multiphysics, multiscale simulation code

In this work, we:

1. Implement GR1D’s M1 radiation transport scheme
* Initially excluding velocity & energy coupling terms
« Map from GR1D after bounce to capture important physics during collapse

2. Extend gravity solver to include Effective General Relativistic
Potential (Marek et al. 2006 Case A)
3. Simulate 5 stars in 1D & 2D, Newtonian & GR gravity
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Multi-D M1 in FLASH o7
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Multi-D M1 in FLASH ocnm

ouch " prey,
From Rampp & Janka (2002)

2D cylindrical Newtonian:

1
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1D-1D-2D check oy,
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Compare GR1D (with Effective Potential, full velocity
dependence and energy group coupling) to FLASH 1D and

FLASH 2D. GR & 2D increase heating! S15WW95, L5220 EOS
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See Liebendoerfer et al. (2001); Mueller et al. (2012) for similar results
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Compare GR1D (with Effective Potential, full velocity
dependence and energy group coupling) to FLASH 1D and

FLASH 2D. GR & 2D increase heating! S15WW95, L5220 EOS
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Compare GR1D (with Effective Potential, full velocity
dependence and energy group coupling) to FLASH 1D and

FLASH 2D. GR & 2D increase heating! Pheat = Lheat
eat —
s15WW95, LS220 EOS (Ly, +Lz,)| gain
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All Newtonian simulations we perform in 1D and 2D fail up to

at 650ms after bounce

2D simulations
stay very spherical
until ~100-150ms
after bounce

2D gives
appreciable boost
to heating
efficiency ~30%
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All Newtonian simulations we perform in 1D and 2D fail up to
at 650ms after bounce
o2

o s12WHO7 |
* 2D simulations preliminary
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Newtonian Gravity — ccnm
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The failure to explodes means the accretion rate is identical to
1D, neutrino signal, while modulated, closely follows 1D

* Velocity terms, energy- 80
group coupling, and
inelastic scattering sol
have little effect on v,
and anti-v,_ neutrinos
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The failure to explodes means the accretion rate is identical to
1D, neutrino signal, while modulated, closely follows 1D

* Velocity terms, energy-
group coupling, and
inelastic scattering
have little effect on v,
and anti-v,_ neutrinos

* Significant effect on v,
because of inelastic
scattering

e PNS convection at late
times influences v,
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Newtonian Gravity
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The failure to explodes means the accretion rate is identical to
1D, neutrino signal, while modulated, closely follows 1D

* Velocity terms, energy-
group coupling, and
inelastic scattering
have little effect on v,
and anti-v,_ neutrinos

* Significant effect on v,
because of inelastic
scattering

e PNS convection at late
times influences v,
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In FLASH, we find that the GR effective potential is suggesting
successful explosions in s20 and s25 after ~300ms but not s12
or s15 300

I — 512WHO07 |
Heating Efficiency 550l —— sI5WHO7 |
i . — i 520WHO07 1
is enhanced in all c | ———— S25WHO7 |
. 2 i e 515WW95 |
models via GR — 200} 0 <
v
Similar to other '(50 150]
studies with similar T |
initial data g 100
i I ]
. . Vp) I ‘\"}E}}.‘. - ]
Still differences 50¢ R :
.6, convection is | Preliminary!! |

stronger
g t_tbounce [S]



In FLASH, we find that the GR effective potential is suggesting
successful explosions in s20 and s25 after ~300ms but not s12

or s15
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Effective GR Gravity

* In FLASH, we find that the GR effective potential is suggesting
successful explosions in s20 and s25 after ¥~300ms but not s12
or s1l5
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’! Summary

Variations in electron capture rates during the
collapse phase had a modest effect on the
initial conditions for the post bounce evolution

Newtonian core collapse simulations in FLASH
with Newtonian gravity fail to explode

GR effective potential leads to systematically
higher heating rates than Newtonian gravity
and gives explosions in 2D in FLASH



