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The limits of the nuclear landscape
Jochen Erler1,2, Noah Birge1, Markus Kortelainen1,2,3, Witold Nazarewicz1,2,4, Erik Olsen1,2, Alexander M. Perhac1 & Mario Stoitsov1,2{

In 2011, 100 new nuclides were discovered1. They joined the
approximately 3,000 stable and radioactive nuclides that either
occur naturally on Earth or are synthesized in the laboratory2,3.
Every atomic nucleus, characterized by a specific number of
protons and neutrons, occupies a spot on the chart of nuclides,
which is bounded by ‘drip lines’ indicating the values of neutron
and proton number at which nuclear binding ends. The place-
ment of the neutron drip line for the heavier elements is based
on theoretical predictions using extreme extrapolations, and so is
uncertain. However, it is not known how uncertain it is or how
many protons and neutrons can be bound in a nucleus. Here we
estimate these limits of the nuclear ‘landscape’ and provide
statistical and systematic uncertainties for our predictions. We
use nuclear density functional theory, several Skyrme interactions
and high-performance computing, and find that the number of
bound nuclides with between 2 and 120 protons is around 7,000.
We find that extrapolations for drip-line positions and selected
nuclear properties, including neutron separation energies relevant
to astrophysical processes, are very consistent between the models
used.

Only 288 of the several thousand nuclides, or isotopes, known to
inhabit the nuclear landscape are either stable or practically stable (that
is, have half-lives longer than the expected life of the Solar System).
These 288 nuclides form the ‘valley of stability’ (Fig. 1). By moving
away from this valley, by adding nucleons, we enter the vast territory of
short-lived radioactive nuclei, which disintegrate by emitting b- and
a-particles or split into smaller parts through spontaneous fission.
Nuclear existence ends at the drip lines, where there is no longer enough
binding energy to prevent the last nucleons from escaping the nucleus.
As indicated in Fig. 1, the proton-rich border of the nuclear territory
has been experimentally delineated up to protactinium2 (proton
number, Z 5 91). The neutron-rich boundary is known only up to
oxygen (Z 5 8) because of the long distance separating the valley of
stability from the neutron drip line3. The superheavy nucleus with
Z 5 118 and A 5 294 (ref. 4) marks the current limit of nuclear charge
and mass. The borders of the superheavy region are unknown and
difficult to predict because competition between Coulomb and shell
effects can cause voids and exotic topologies to form (compare with
section 4 of ref. 5).

Today, about 3,000 nuclides are known2,3 (see also http://www.
nscl.msu.edu/,thoennes/2009/discovery.htm). Experimental explora-
tion of very neutron-rich nuclei is extremely challenging because of the
very low production rates in studies involving the fragmentation of
stable nuclei, and the separation and identification of the products. It
is anticipated that the next generation of radioactive ion-beam facilities
will have high-power beams and highly efficient and selective fragment
separators with which to delineate most of the neutron drip line up to
mass number A < 100 (ref. 6).

The primary factor that determines the particle stability—and drip
line—of a nuclide is its separation energy3: the amount of energy
needed to remove from it a single neutron (S1n) or proton (S1p) or
two neutrons (S2n) or protons (S2p). In terms of the binding energy,

B(Z, N), where N denotes the neutron number, the one-neutron and
two-neutron separation energies are S1n(Z, N) 5 B(Z, N 2 1) 2 B(Z, N)
and S2n(Z, N) 5 B(Z, N 2 2) 2 B(Z, N), respectively; analogous rela-
tionships apply to protons. If the separation energy is positive, the
nucleus is stable to nucleon emission; conversely, if the separation
energy is negative, the nucleus is unstable. The drip line is reached when
S1n < 0 (one-neutron drip line) or S2n < 0 (two-neutron drip line). The
drip-line position is strongly affected by nucleonic superfluidity7,
which makes nuclei with even numbers of nucleons more bound than
their odd-nucleon-number neighbours. In terms of the chemical
potential, ln, and odd–even energy difference (or pairing gap), Dn,
the separation energies can be written8 as S1n < 2ln 2 Dn (for odd
N) and S2n < 22ln (for even N). Although the negative chemical
potential guarantees that an even-N system is bound, this is not true
if N is odd: S1n . 0 only if ln , 2Dn. The helium isotopes provide
evidence for the impact of pairing on nuclear existence: the even–even
isotopes 4He, 6He and 8He are bound whereas 5He, 7He and 9He are
not. Consequently, the one-nucleon drip line is reached earlier than the
two-nucleon drip line, and the region of nuclear existence has a ragged
border that zigzags between odd- and even-particle species. Because
the aim of this study is to estimate the maximum extent of nuclear
binding, we focus on even–even nuclei and two-neutron separation
energies.

The quest for the limits of nuclear binding is closely connected to the
question about the origin of elements in the universe. The astrophysical
rapid proton capture and rapid neutron capture processes, which are
responsible for the generation of many heavy elements, operate very
close to the drip lines9; hence, the structure of very exotic, weakly
bound nuclei directly impacts the way the elements are produced in
stars.

From the theoretical point of view, the description of weakly
bound superfluid complex nuclei is a demanding task as it requires
the understanding and control of three crucial aspects of the nuclear
many-body problem: interaction, pairing and coupling to the low-
lying particle continuum10,11. For such a task, the microscopic tool of
choice is the nuclear density functional theory (DFT) based on the self-
consistent mean-field approach12. The main ingredient of the nuclear
DFT is the effective interaction between nucleons represented by the
energy density functional (EDF), which depends on total (neutron-
plus-proton) and isovector (neutron-minus-proton) densities and
currents. Because the coupling constants of the nuclear EDF cannot
yet be computed by ab initio methods, it is customary to use optim-
ization techniques to adjust them to carefully selected experimental
data13–15 (primarily on nuclei near the valley of stability). The resulting
uncertainties in model parameters can be used to estimate statistical
errors of calculated quantities, especially when it comes to extrapola-
tions into unexplored regions (for example towards the neutron drip
line)14. However, to estimate systematic model errors, resulting
from different theoretical assumptions and/or different optimiza-
tion protocols, it is necessary to compare a variety of models and
parameterizations. In this way, it is possible to assess the robustness
of theoretical predictions and estimate theoretical uncertainties. The
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Masses of exotic calcium isotopes pin down
nuclear forces
F. Wienholtz1, D. Beck2, K. Blaum3, Ch. Borgmann3, M. Breitenfeldt4, R. B. Cakirli3,5, S. George1, F. Herfurth2, J. D. Holt6,7,
M. Kowalska8, S. Kreim3,8, D. Lunney9, V. Manea9, J. Menéndez6,7, D. Neidherr2, M. Rosenbusch1, L. Schweikhard1,
A. Schwenk7,6, J. Simonis6,7, J. Stanja10, R. N. Wolf1 & K. Zuber10

The properties of exotic nuclei on the verge of existence play a
fundamental part in our understanding of nuclear interactions1.
Exceedingly neutron-rich nuclei become sensitive to new aspects of
nuclear forces2. Calcium, with its doubly magic isotopes 40Ca and
48Ca, is an ideal test for nuclear shell evolution, from the valley of
stability to the limits of existence. With a closed proton shell, the
calcium isotopes mark the frontier for calculations with three-
nucleon forces from chiral effective field theory3–6. Whereas pre-
dictions for the masses of 51Ca and 52Ca have been validated by
direct measurements4, it is an open question as to how nuclear
masses evolve for heavier calcium isotopes. Here we report the mass
determination of the exotic calcium isotopes 53Ca and 54Ca, using
the multi-reflection time-of-flight mass spectrometer7 of ISOLTRAP
at CERN. The measured masses unambiguously establish a promi-
nent shell closure at neutron number N 5 32, in excellent agree-
ment with our theoretical calculations. These results increase our
understanding of neutron-rich matter and pin down the subtle
components of nuclear forces that are at the forefront of theoretical
developments constrained by quantum chromodynamics8.

Exotic nuclei with extreme neutron-to-proton asymmetries exhibit
shell structures generated by unexpected orderings of shell occupa-
tions. Their description poses enormous challenges, because most
theoretical models have been developed for nuclei at the valley of
stability. It is thus an open question how well they can predict new
magic numbers emerging far from stability9–11. This is closely linked to
our understanding of the different components of the strong force
between neutrons and protons, such as the spin–orbit or tensor inter-
actions, which modify the gaps between single-particle orbits12, and of
three-body forces, which are pivotal in calculations of extreme neut-
ron-rich systems based on nuclear forces2,13,14. The resulting magic
numbers, as well as the strength of the corresponding shell closures,
are critical for global predictions of the nuclear landscape15, and thus
for the successful modelling of matter in astrophysical environments.

Three-body forces arise naturally in chiral effective field theory8,
which provides a systematic basis for nuclear forces connected via
its symmetries to the underlying theory of quarks and gluons, namely
quantum chromodynamics. Owing to the consistent description in

effective field theory, there are only two undetermined low-energy
couplings in chiral three-nucleon forces at leading and sub-leading
orders. These are constrained by the properties of light nuclei 3H
and 4He only, so that all heavier elements are predictions in chiral
effective field theory. The present frontier of three-nucleon forces is
located in the calcium isotopes, where the structural evolution is domi-
nated by valence neutrons due to the closed proton shell at atomic
number Z 5 20 (refs 3, 5). These predictions withstood a recent chal-
lenge from direct Penning-trap mass measurements of 51Ca and 52Ca
at TITAN/TRIUMF4, which have established a substantial change
from the previous mass evaluation and leave completely open how
nuclear masses evolve past 52Ca. This region is also very exciting
because of evidence of a new magic neutron number N 5 32 from
nuclear spectroscopy16–18, with a high 21 excitation energy in 52Ca
(refs 19, 20). These results are accompanied by successful theoretical
studies based on phenomenological shell-model interactions21,22,
which are similar for the excitation spectra at N 5 32 but disagree
markedly in their predictions for 54Ca and further away from stability.

Here we present the first mass measurements of the exotic calcium
isotopes 53Ca and 54Ca. These provide key masses for all theoretical
models, and unambiguously establish a strong shell closure, in excel-
lent agreement with the predictions including three-nucleon forces.

The mass of a nucleus provides direct access to the binding energy,
the net result of all interactions between nucleons. Penning traps have
proven to be the method of choice when it comes to high-precision
mass determination of exotic nuclei23,24. The mass m of an ion of
interest with charge q stored in a magnetic field B is determined by
comparing its cyclotron frequency nC 5 qB/(2pm) to that of a well-
known reference ion, nC,Ref. The frequency ratio rICR 5 nC,Ref/nC (ICR,
ion cyclotron resonance) then yields the mass ratio directly and thus
the atomic mass of the isotope.

We have made a critical step towards determining the pivotal calcium
masses by introducing a new method of precision mass spectrometry for
short-lived isotopes. The developments and measurements were per-
formed with ISOLTRAP25, a high-resolution Penning-trap mass
spectrometer at the ISOLDE/CERN facility. This method was used to
confirm and even improve the accuracy of the recent mass measurements
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Reference ion source

ISOLDE ion beam

RFQ cooler and buncher MR-TOF mass spectrometer TOF detector

Towards
Penning traps

Figure 1 | Experimental set-up.
Main components relevant for the
53,54Ca study: incoming ISOLDE ion
beam, reference ion source, radio-
frequency quadrupole (RFQ)
buncher, multi-reflection time-of-
flight (MR-TOF) mass spectrometer
and (removable) time-of-flight ion
detector.
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A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron star matter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature. We calculate the pulsar mass to be (1.97 6 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star this massive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.

In March 2010, we performed a dense set of observations of J1614-
2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
the Shapiro delay signal is strongest. These data were taken with the newly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of ,1ms.

We used the measured arrival times to determine key physical para-
meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-term data set, parameter covariance and dispersion measure vari-
ation can be found in Supplementary Information.

As shown in Fig. 1, the Shapiro delay was detected in our data with
extremely high significance, and must be included to model the arrival
times of the radio pulses correctly. However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companion mass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chain Monte Carlo (MCMC) approach to
explore the post-fit x2 space and derive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7) mas yr21

Proper motion in b 230(3) mas yr21

Parallax 0.5(6) mas
Pulsar spin period 3.1508076534271(6) ms
Period derivative 9.6216(9) 3 10221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865 pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esin v) 1.1(3) 3 1027

Second Laplace parameter (ecos v) 21.29(3) 3 1026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16 h 14 min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 3 1026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3 108 G
Characteristic age 5.2 Gyr
Spin-down luminosity 1.2 3 1034 erg s21

Average flux density* at 1.4 GHz 1.2 mJy
Spectral index, 1.1–1.9 GHz 21.9(1)
Rotation measure 228.0(3) rad m22

Timing model parameters (top), quantities derived from timing model parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s

uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an 800-MHz-wide band centred at a radio frequency of 1.5GHz. The raw profiles were polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on >1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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A Massive Pulsar in a 

Compact Relativistic Binary

John Antoniadis,* Paulo C. C. Freire, Norbert Wex, Thomas M. Tauris, Ryan S. Lynch, 
Marten H. van Kerkwijk, Michael Kramer, Cees Bassa, Vik S. Dhillon, Thomas Driebe, 
Jason W. T. Hessels, Victoria M. Kaspi, Vladislav I. Kondratiev, Norbert Langer, 
Thomas R. Marsh, Maura A. McLaughlin, Timothy T. Pennucci, Scott M. Ransom, 
Ingrid H. Stairs, Joeri van Leeuwen, Joris P. W. Verbiest, David G. Whelan

Introduction: Neutron stars with masses above 1.8 solar masses (M�), possess extreme gravitational 
fi elds, which may give rise to phenomena outside general relativity. Hitherto, these strong-fi eld devia-
tions have not been probed by experiment, because they become observable only in tight binaries 
containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves 
can be tested. Understanding the origin of such a system would also help to answer fundamental ques-
tions of close-binary evolution.

Methods: We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved 
optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to 
derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.

Results: We fi nd that the white dwarf has a mass of 0.172 ± 0.003 M�, which, combined with orbital 
velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M�. Additionally, over a span of 2 years, 
we observed a signifi cant decrease in the orbital period, P�b

obs = –8.6 ± 1.4 µs year�1 in our radio-
timing data.

Discussion: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass 
of 2 M� and independently confi rms the existence of such massive neutron stars in nature. For these 

masses and orbital period, general relativity 
predicts a significant orbital decay, which 
matches the observed value, P�b

obs/ P�b
GR = 1.05 

± 0.18.
The pulsar has a gravitational binding 

energy 60% higher than other known neu-
tron stars in binaries where gravitational-
wave damping has been detected. Because 
the magnitude of strong-field deviations 
generally depends nonlinearly on the bind-
ing energy, the measurement of orbital 
decay transforms the system into a gravita-
tional laboratory for an as-yet untested grav-
ity regime. The consistency of the observed 
orbital decay with general relativity  therefore 
supports its validity, even for such extreme 
gravity-matter couplings, and rules out 
strong-fi eld phenomena predicted by physi-
cally well-motivated alternatives. Moreover, 
our result supports the use of general rela-
tivity–based templates for the detection of 
gravitational waves from merger events with 
advanced ground-based detectors.

Lastly, the system provides insight into 
pulsar-spin evolution after mass accretion. 
Because of its short merging time scale of 
400 megayears, the system is a direct chan-
nel for the formation of an ultracompact x-ray 
binary, possibly leading to a pulsar-planet 
system or the formation of a black hole.

Artist’s impression of the PSR J0348+0432 system. 
The compact pulsar (with beams of radio emission) produces 
a strong distortion of spacetime (illustrated by the green 
mesh). Conversely, spacetime around its white dwarf com-
panion (in light blue) is substantially less curved. According 
to relativistic theories of gravity, the binary system is subject 
to energy loss by gravitational waves.
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Evidence for a new nuclear ‘magic number’ from the
level structure of 54Ca
D. Steppenbeck1, S. Takeuchi2, N. Aoi3, P. Doornenbal2, M. Matsushita1, H. Wang2, H. Baba2, N. Fukuda2, S. Go1, M. Honma4,
J. Lee2, K. Matsui5, S. Michimasa1, T. Motobayashi2, D. Nishimura6, T. Otsuka1,5, H. Sakurai2,5, Y. Shiga7, P.-A. Söderström2,
T. Sumikama8, H. Suzuki2, R. Taniuchi5, Y. Utsuno9, J. J. Valiente-Dobón10 & K. Yoneda2

Atomic nuclei are finite quantum systems composed of two distinct
types of fermion—protons and neutrons. In a manner similar to
that of electrons orbiting in an atom, protons and neutrons in a
nucleus form shell structures. In the case of stable, naturally occur-
ring nuclei, large energy gaps exist between shells that fill completely
when the proton or neutron number is equal to 2, 8, 20, 28, 50, 82 or
126 (ref. 1). Away from stability, however, these so-called ‘magic
numbers’ are known to evolve in systems with a large imbalance of
protons and neutrons. Although some of the standard shell closures
can disappear, new ones are known to appear2,3. Studies aiming to
identify and understand such behaviour are of major importance in
the field of experimental and theoretical nuclear physics. Here we
report a spectroscopic study of the neutron-rich nucleus 54Ca (a
bound system composed of 20 protons and 34 neutrons) using
proton knockout reactions involving fast radioactive projectiles.
The results highlight the doubly magic nature of 54Ca and provide
direct experimental evidence for the onset of a sizable subshell clos-
ure at neutron number 34 in isotopes far from stability.

The shell structure of the atomic nucleus was first successfully
described more than 60 years ago1. However, the question of how
robust the standard magic numbers are in unstable nuclei with a large
excess of neutrons—often referred to as ‘exotic’ nuclei—has been one
of the main driving forces behind recent nuclear structure studies that
focus on changes in the shell structure, called ‘shell evolution’. A note-
worthy example is the disappearance of the N 5 28 (neutron number
28) standard magic number in 42Si (ref. 4), a nucleus that lies far from
the stable isotopes on the Segrè chart. On the contrary, exotic oxygen
isotopes3 provide evidence for the onset of a new shell closure at
N 5 16, one that is not observed in stable nuclei. In both cases, the
tensor force, a non-central component of the nuclear force, has a key
role in describing the experimental spectra5.

The region of the Segrè chart around exotic calcium isotopes has also
contributed valuable input to the understanding of nuclear shell evolu-
tion over recent years owing to experimental advances. Enhanced
excitation energies of first JP 5 21 states (spin, J; parity, P) and reduced
c-ray transition probabilities, which are good indicators of nuclear shell
gaps, for 52Ca (refs 6, 7), 54Ti (refs 8, 9) and 56Cr (refs 10, 11) provide
substantial evidence for the onset of a sizable energy gap at N 5 32. This
result was recently confirmed by high-precision mass measurements on
neutron-rich Ca isotopes12. In the framework of tensor-force-driven
shell evolution5, the N 5 32 subshell closure is a direct consequence of
the weakening of the attractive nucleon–nucleon interaction between
protons (p) and neutrons (n) in the pf7/2 and nf5/2 single-particle orbitals
(SPOs) as the number of protons in the pf7/2 SPO is reduced and the
magnitude of the pf7/2–nf5/2 energy gap increases (Fig. 1a–c).

A question that has been asked frequently over recent years is
whether or not the onset of another subshell gap occurs in exotic

N 5 34 isotones, which was suggested qualitatively more than a decade
ago13 on the basis of the general properties of nuclear forces. The onset
of an appreciable subshell closure at N 5 34 is illustrated in Fig. 1d,
indicating an energy gap between the np1/2 and nf5/2 SPOs in 54Ca that
is comparable to the separation of the np3/2 and np1/2 spin–orbit part-
ners, which is also implied by recent theoretical results; see, for
example, ref. 14. We stress, however, that no N 5 34 subshell closure
was reported in the experimental investigations of 56Ti (refs 9, 15) or
58Cr (refs 11, 16), and notable doubt on this magic number for Ca
isotopes has been raised17,18. Indeed, as indicated in Fig. 2a, theoretical
predictions of the energy of the first JP 5 21 state for 54Ca vary con-
siderably, ranging from ,1 MeV in some cases to as high as ,4 MeV
in others14–16,19–24, despite exhibiting close agreement for lighter iso-
topes; for example, the predictions of the same theories lie within only
0.4 MeV of the empirical result for 52Ca. Such stark discrepancies at
N 5 34 reflect the need for direct experimental input on the matter.

To address this issue, we report on an experimental study of 54Ca to
clarify the strength of the N 5 34 subshell gap in nuclei farther from
stability. The energies of nuclear excited states were investigated using
proton knockout reactions involving 55Sc and 56Ti projectiles on a Be
target at the Radioactive Isotope Beam Factory, Japan, operated by the
RIKEN Nishina Center and the Center for Nuclear Study, University
of Tokyo. Experimental details are provided in Methods Summary.
Particle identification plots indicating the radioactive species trans-
ported through the BigRIPS separator and ZeroDegree spectrometer25,
which were used to select and tag radioactive beam projectiles and
reaction products, are presented in Fig. 3a and Fig. 3b, respectively.
We emphasize that the intensity of the radioactive beam reported here,
which was critical to the success of the experiment, is unique to the
Radioactive Isotope Beam Factory. Excited-state energies were deduced
using the technique of in-beam c-ray spectroscopy.

The c-rays measured in coincidence with 54Ca projectiles produced
through the one- and two-proton knockout reaction channels are
presented in Fig. 4a. The c-ray energies measured in the laboratory
frame of reference have been corrected for Doppler shifts, and so the
transitions appear at the energies they would in the rest frame of the
nucleus. The most intense c-ray line in the 54Ca spectrum, the peak at
2,043(19) keV (error, 1 s.d.) in Fig. 4a, is assigned as the transition from
the first 21 state (2z

1 ) to the 01 ground state. In addition, two weaker
transitions are located at 1,656(20) and, respectively, 1,184(24) keV.
Figure 4b shows a c-ray spectrum obtained with the condition of a
prompt coincidence (#10 ns) with the 2,043-keV c-ray, indicating
that the weaker transitions were emitted in decay sequences involving
the 2z

1 R 01 ground-state transition. On the basis of the c-ray relative
intensities, the 1,656-keV transition is proposed to depopulate a level
at 3,699(28) keV, as presented in the 54Ca level scheme in the lower-
right section of Fig. 4a. Placement of the 1,184-keV transition in the
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New frontiers from rare isotope beams (e.g., FRIB)
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Lattice QCD

• requires extreme amounts 
of computational resources

• currently limited to 1- or 2-nucleon systems

• current accuracy insufficient for 
precision nuclear structure
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Chiral effective field theory
nuclear interactions and currents 

nuclear structure and 
reaction observables

Quantum Chromodynamics

Renormalization Group methods

Ab initio nuclear structure theory

ab initio many-body frameworks
Faddeev, Quantum Monte Carlo, no-core shell model, coupled cluster ...



Nuclear effective degrees of freedom

• if a nucleus is probed at high energies, 
  nucleon substructure is resolved

• at low energies, details are not resolved



Nuclear effective degrees of freedom

• if a nucleus is probed at high energies, 
  nucleon substructure is resolved

• at low energies, details are not resolved

• replace fine structure by something 
simpler (like multipole expansion),
low-energy observables unchanged

Resolution

effective field theory



• choose relevant degrees of 
freedom: here nucleons and pions

• operators constrained by 
symmetries of QCD

• short-range physics captured in 
few short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV

• power-counting:                 
expand in powers Q/Λb

• systematic: work to desired 
accuracy, obtain error estimates

• 3NF at N3LO completely 
predicted, no new couplings

Chiral effective field theory for nuclear forces
                    NN       3N           4N

2006

1994

2011



             NN 3N  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

1.5

large uncertainties in coupling 
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first partial wave decomposition, 
opens the way to new ab initio studies



Chiral effective field theory
nuclear interactions and currents 

nuclear structure and 
reaction observables

Ab initio nuclear structure theory

predictions
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power counting?
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• elimination of coupling between low- and high momentum components,
          simplified many-body calculations

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformation also changes three-body (and higher-body) interactions.

Systematic decoupling of high-momentum physics:
The Similarity Renormalization Group



Ground state energies of nuclei 
based on consistently evolved 3NF interactions

• very promising results for light nuclei, issues for heavier nuclei

NN (N3LO) 
+ 3NF (N2LO, 500 MeV)

evolution equations at three-body level was demonstrated
only recently [6,7]. In view of the application in the
NCSM it is convenient to solve the flow equation for the
three-body system using a harmonic-oscillator (HO)
Jacobi-coordinate basis [12]. The intermediate sums in
the 3N Jacobi basis are truncated at Nmax ¼ 40 for chan-
nels with J " 5=2 and ramp down linearly to Nmax ¼ 24
for J # 13=2. Based on this and the corresponding solution
of the flow equation in two-body space (using either a
partial-wavemomentum or harmonic-oscillator representa-
tion) we extract the irreducible two- and three-body terms
of the Hamiltonian for the use in A-body calculations.

We have made major technical improvements regarding
the SRG transformation, reducing the computational effort
by 3 orders of magnitude compared to Ref. [7], e.g., by
using a solver with adaptive step-size and optimized matrix
operations. Furthermore, we have developed a transforma-
tion from 3N Jacobi matrix elements to a JT-coupled
representation with a highly efficient storage scheme,
which allows us to handle 3N matrix-element sets of
unprecedented size. A detailed discussion of these aspects
is presented elsewhere.

Importance-truncated NCSM.—Based on the SRG-
evolved Hamiltonian we treat the many-body problem in
the NCSM; i.e., we solve the large-scale eigenvalue prob-
lem of the Hamiltonian, represented in a many-body basis
of HO Slater determinants truncated with respect to the
maximum HO excitation energy Nmax@!. In order to cope
with the factorial growth of the basis dimension with Nmax

and particle number A, we use the importance-truncation
(IT) scheme introduced in Refs. [13,14]. The IT-NCSM
uses an importance measure !" for the individual basis
states j""i derived from many-body perturbation theory
and retains only states with j!"j above a threshold !min in
the model space. Through a variation of the threshold and
an a posteriori extrapolation !min ! 0 the contribution of
discarded states is recovered. We use the sequential update
scheme discussed in Ref. [14], which connects to the full
NCSMmodel space and thus the exact NCSM results in the
limit of vanishing threshold. In the following we always
report threshold-extrapolated results including an estimate
for the extrapolation uncertainties. For the present appli-
cation we have extended the IT-NCSM to include full 3N
interactions. Using the JT-coupled 3N matrix elements we
are able to perform calculations up to Nmax ¼ 12 or 14 for
all p-shell nuclei with moderate computational resources.

Ground-state energies.—We first focus on IT-NCSM
calculations for the ground states of 4He, 6Li, 12C, and
16O using SRG-transformed chiral NN þ 3N interactions.
Throughout this work we use the chiral NN interaction at
N3LO of Entem and Machleidt [1] and the 3N interaction
at N2LO [15] with low-energy constants determined from
the triton binding energy and #-decay half-life [16]. In
order to disentangle the effects of the initial and the
SRG-induced 3N contributions, we consider three different

Hamiltonians. (i) NN only: starting from the chiral NN
interaction only the SRG-evolved NN contributions are
kept. (ii) NN þ 3N-induced: starting from the chiral NN
interaction the SRG-evolvedNN and the induced 3N terms
are kept. (iii) NN þ 3N-full: starting from the chiral
NN þ 3N interaction all SRG-evolved NN and 3N terms
are kept. For each Hamiltonian we assess the dependence
of the observables, here the ground-state energies, on the
flow-parameter $. We use the five values $ ¼ 0:04, 0.05,
0.0625, 0.08, and 0:16 fm4, which correspond to momen-
tum scales #¼$%1=4¼2:24, 2.11, 2, 1.88, and 1:58 fm%1,
respectively. For extrapolations to infinite model-space,
Nmax ! 1, we use simple exponential fits based on the
last 3 or 4 data points. The extrapolated energy is given by
the average of the two extrapolations, the uncertainty by
the difference.
The ground-state energies obtained in IT-NCSM calcu-

lations for 4He and 6Li with the three Hamiltonians are
summarized in Fig. 1. Analogous calculations in the full
NCSM for the same SRG-evolved initial Hamiltonian have
been presented in Ref. [6] for 4He and in Ref. [7] for 6Li.
We have cross-checked our results with Refs. [6,7] and
found excellent agreement.
The first and foremost effect of the SRG transformation

is the acceleration of the convergence of NCSM calcula-
tions with Nmax. With increasing $ the convergence is
systematically improved for all three versions of the
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FIG. 1 (color online). IT-NCSM ground-state energies for 4He
and 6Li as function of Nmax for the three types of Hamiltonians
(see column headings) for a range of flow parameters: $ ¼ 0:04
(blue,&), 0.05 (red,r), 0.0625 (green,m), 0.08 (violet,j), and
0:16 fm4 (light blue,w). Error bars indicate the uncertainties of
the threshold extrapolations. The bars at the right-hand side
of each panel indicate the results of exponential extrapolations
of the individual Nmax sequences (see text).
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Hamiltonian. With the initial Hamiltonian, i.e., ! ¼ 0,
even our large model spaces are not sufficient to obtain
converged results.

For the NN-only Hamiltonian Fig. 1 shows a clear
!-dependence of the extrapolated ground-state energies
for 4He and 6Li, hinting at sizable SRG-induced 3N con-
tributions. When including those induced 3N terms, i.e.,
when using the NN þ 3N-induced Hamiltonian, the ex-
trapolated ground-state energies are shifted significantly
and become ! independent within the uncertainties of the
Nmax-extrapolation. Thus, induced contributions beyond
the 3N level originating from the initial NN interaction
are negligible in the ! range considered here, indicating
that the NN þ 3N-induced Hamiltonian is unitarily
equivalent to the initial NN Hamiltonian. The extrapolated
ground-state energies for a subset of !-values are summa-
rized in Table I.

By including the initial chiral 3N interaction, i.e., by
using the NN þ 3N-full Hamiltonian, the ground-state
energies are lowered and are in good agreement with
experiment for both, 4He and 6Li. There is no sizable !
dependence in the range considered here. We conclude that
induced 3N terms originating from the initial NN interac-
tion are important, but that induced 4N (and higher) terms
are not relevant for light p-shell nuclei, since the ground-
state energies obtained with the NN þ 3N-induced and the
NN þ 3N-full Hamiltonian are practically ! independent.

This picture changes if we consider nuclei in the upper
p-shell. In Fig. 2 we present the first accurate ab initio
calculations for the ground states of 12C and 16O starting
from chiral NN þ 3N interactions. By combining the
IT-NCSM with the JT-coupled storage scheme for the
3N matrix elements we are able to reach model spaces
up to Nmax ¼ 12 for the upper p-shell at moderate compu-
tational cost. Previously, even the most extensive NCSM
calculations including full 3N interactions were limited to
Nmax ¼ 8 in this regime [17]. As evident from the Nmax

dependence of the ground-state energies, this increase in
Nmax is vital for obtaining precise extrapolations.
The general pattern for 12C and 16O is similar to the light

p-shell nuclei: The NN-only Hamiltonian exhibits a severe
! dependence indicating sizable induced 3N contributions.
Their inclusion in the NN þ 3N-induced Hamiltonian
leads to ground-state energies that are practically indepen-
dent of !, confirming that induced 4N contributions are
irrelevant when starting from the NN interaction only.
Therefore, the NN þ 3N-induced results can be consid-
ered equivalent to a solution for the initial NN interaction.
The 16O binding energy per nucleon of 7.48(4) MeV is in
good agreement with a recent coupled-cluster !-CCSD(T)
result of 7.56MeV for the ‘‘bare’’ chiralNN interaction [18].
In contrast to light nuclei the ground-state energies of

12C and 16O obtained with the NN þ 3N-full Hamiltonian
do show a significant ! dependence, as evident from
Fig. 2(c) and 2(f) and, for a subset of ! values, from
Table I. The inclusion of the initial chiral 3N interaction
leads to induced 4N contributions whose omission causes
the ! dependence.
A direct comparison of the ! dependence of the extrapo-

lated ground-state energies for 4He and 16O is presented in
Fig. 3. For both nuclei, the NN-only Hamiltonian exhibits
a sizable variation of the ground-state energies of about
25 MeV (0.7 MeV) for 16O (4He) in the range from
! ¼ 0:04 fm4 to 0:16 fm4. The inclusion of the induced
3N terms eliminates this ! dependence. The inclusion of
the initial 3N interaction again generates an ! dependence
of about 10 MeV for 16O. Note that the induced 4N (and
higher) contributions that are needed to compensate the
! dependence for 16O reach about half the size of the total

TABLE I. Summary of Nmax-extrapolated IT-NCSM ground-
state energies in MeV for a subset of ! values with @" ¼
20 MeV (see text).

!½fm4$ 4He 6Li 12C 16O

NN 0.05 %28:08ð2Þ %31:5ð2Þ %99:1ð6Þ %161:0ð2Þ
only 0.0625 %28:25ð1Þ %31:8ð1Þ %101:4ð3Þ %164:9ð6Þ

0.08 %28:38ð1Þ %32:2ð1Þ %103:7ð2Þ %170:2ð4Þ
NNþ 0.05 %25:33ð1Þ %27:7ð2Þ %76:9ð2Þ %119:5ð3Þ
3N-ind. 0.0625 %25:34ð1Þ %27:6ð2Þ %77:2ð1Þ %119:7ð6Þ

0.08 %25:34ð1Þ %27:6ð1Þ %77:4ð2Þ %119:5ð2Þ
NNþ 0.05 %28:45ð3Þ %31:8ð2Þ %96:1ð4Þ %143:7ð2Þ
3N-full 0.0625 %28:45ð1Þ %31:8ð1Þ %96:8ð3Þ %145:6ð2Þ

0.08 %28:46ð1Þ %31:8ð1Þ %97:6ð1Þ %147:8ð1Þ
exp. %28:30 %31:99 %92:16 %127:62
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• remarkable agreement of different MB calculations for a given Hamiltonian
• calculations are based on NN (N3LO) and 3NF (N2LO) forces
• need to quantify theoretical uncertainties
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FIG. 3. (Color online) Two-neutron separation energy S2n

(top) and pairing gap �(3)
n from three-point binding-energy

di↵erences (bottom) versus neutron numberN for the calcium
isotopes. The TITAN mass values and the AME2003 values
are shown by the symbols as in Fig. 2. The point labelled “TI-
TAN+AME2003” is based partly on the TITAN mass values
and complemented by the AME2003 value for 53Ca. Theoret-
ical predictions are shown based on chiral NN and 3N forces
(NN+3N) in the extended pfg9/2 valence space using empir-
ical (emp) SPEs in 41Ca and consistently calculated MBPT
SPEs (MBPT).

(�1)N [B(N + 1, Z) + B(N � 1, Z) � 2B(N, Z)]/2. The
predicted S

2n is very similar for both sets of SPEs and
is in excellent agreement with the new TITAN mass val-
ues. For 51,52Ca, the di↵erence between theory and ex-
periment is only . 200 keV, but we emphasize that it
will be important to also study the impact of the un-
certainties in the leading 3N forces. The behavior with

neutron number for �(3)

n is also well reproduced, but the
theoretical gaps are typically 500 keV larger. Finally, we
note also the developments using nonempirical pairing
functionals in this region [41], which provide a bridge to
global energy-density functional calculations.

In summary, the mass of 51K has been measured with
the TITAN facility at TRIUMF for the first time, and
the new precision masses of 51,52Ca show a dramatic in-
crease in binding compared to the atomic mass evalu-
ation. The most neutron-rich 52Ca is more bound by
1.74 MeV, a value similar in magnitude to the deuteron
binding energy. An increased binding around N = 32
was predicted recently in calculations based on chiral NN
and 3N forces [6]. The new TITAN results lead to a
substantial change in the evolution of nuclear masses to
neutron-rich extremes. The significantly flatter behavior

of the two-neutron separation energy agrees remarkably
well with improved theoretical calculations including 3N
forces, making neutron-rich calcium isotopes an exciting
region to probe 3N forces and to test their predictions
towards the neutron dripline. These developments are
of great interest also for astrophysics, as similar changes
in heavier nuclei would have a dramatic impact on nucle-
osynthesis [42], and the same 3N forces provide important
repulsive contributions in neutron-star matter [43].
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during spectra 5 to 11, which resulted in the disappearance of the ion
counts in question. This unambiguously identified these ions as 54Ca.
Figure 2b corresponds to about 90 min of data-taking. MR-TOF MS
spectra of 53Ca and 54Ca were taken in total for 12.6 h and 18.2 h,
respectively.

Our results (rICR and CTOF) for the exotic calcium isotopes investi-
gated (51,52Ca and 53,54Ca, respectively) are summarized in Table 1,
including the resulting mass excesses. The ISOLTRAP values of 51Ca

and 52Ca determined with the Penning trap agree well with the recent
measurements by TITAN4. The uncertainties were reduced by factors
of 40 and 80, respectively, owing to longer excitation times (600 ms in
the case of ISOLTRAP as compared to 80 ms in the case of TITAN),
higher cyclotron frequencies and higher calcium ion yields. The masses
of 53,54Ca determined by the MR-TOF MS have been experimentally
addressed for the first time. As a consistency check, the 52Ca mass was
also measured by the new MR-TOF method, and the mass excess is in
full agreement with both Penning-trap results (Table 1). Furthermore,
a second cross-check measurement in the vicinity of the newly mea-
sured masses was performed. The mass excess of the stable isotope 58Fe
was determined with the stable reference isotopes 58Ni and 85Rb. The
measurement resulted in a mass excess of 262,168.0(47.0) keV/c2,
where the statistical uncertainty is given in parentheses. With a devi-
ation of 13.5 keV/c2 from the literature value28, it agrees well within its
statistical uncertainty. The uncertainties in the MR-TOF method
quoted in Table 1 for 53Ca and 54Ca denote the statistical standard
deviation. For the cross-checks, the MR-TOF method has thus been
employed to measure the mass of a slightly lighter isotope and a slightly
heavier isotope, 52Ca and 58Fe, respectively. The deviations from the
Penning-trap measurement and the literature value, respectively, are
taken as estimates of the relative systematic uncertainty, which lies in
the low 1027 range. Additional cross-check measurements to determine
the systematic uncertainty have been performed over a wide mass range
and will be detailed elsewhere. The precision and fast measurement
cycle of the MR-TOF method makes this a promising approach for the
mass spectrometry of isotopes with lower yield and shorter half-life
than currently accessible.

The binding energies encode information about the ordering of shell
occupation, and thus are essential in the quest for shell closures in exotic
regions of the nuclear chart. Our high-precision data can be used to
provide a critical benchmark for the behaviour far from stability, namely,
the two-neutron separation energy S2n 5 B(Z,N) 2 B(Z,N 2 2), where
B(Z,N) is the binding energy (defined as positive) of a nucleus with Z
protons and N neutrons. The S2n values are a preferred probe of the
evolution of nuclear structure with neutron number, and can be used to
challenge model predictions, as shown in Fig. 3. The pronounced
decrease in S2n revealed by the new 53Ca and 54Ca ISOLTRAP masses
is similar to the decrease beyond the doubly magic 48Ca. In general,
correlations induced by deformation could also cause such a reduction
in S2n, but in the calcium isotopes studied here deformation is expected
to have no role29. Therefore, our new data unambiguously establish a
prominent shell closure at N 5 32. The strength of this shell closure can
be evaluated from the two-neutron shell gap, that is, the two-neutron
separation energy difference S2n(Z,N) 2 S2n(Z,N 1 2). Figure 3c shows a
two-neutron shell gap for 52Ca of almost 4 MeV, where the rise towards
52Ca at N 5 32 is as steep as that towards 48Ca at N 5 28. The peaks at
N 5 Z in Fig. 3c are due to the additional correlation energy for sym-
metric N 5 Z nuclei, known as Wigner energy.

Calcium marks the heaviest chain of isotopes studied with three-
nucleon forces based on chiral effective field theory3–6. Figure 3a shows
the predictions of our microscopic calculations with three-nucleon
forces (that is, ‘NN 1 3N’) using many-body perturbation theory
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Figure 3 | Comparison of experimental results with theoretical predictions.
a, b, Two-neutron separation energy S2n (ref. 28) of the neutron-rich calcium
isotopes as a function of neutron number N, where the new ISOLTRAP values
are shown in red. In a, the ISOLTRAP masses are compared to predictions from
microscopic valence-shell calculations with three-nucleon forces (NN13N)
based on chiral effective field theory (solid line, MBPT) and large-space coupled-
cluster calculations including three-nucleon forces as density-dependent two-
body interactions (dashed line, CC)5. For comparison, we also show the results
of the phenomenological shell-model interactions KB3G21 and GXPF1A22. In
b, the ISOLTRAP masses are compared to state-of-the-art nuclear density-
functional-theory predictions15,29. Insets in a and b show the difference between
the theoretical predictions and experiment. c, Empirical two-neutron shell gap
as a function of proton number Z for N 5 28 and N 5 32. Error bars, 61 s.d.
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Calculations and measurements of neutron-rich nuclei

• high precision mass measurements at TITAN showed that 52Ca is 1.74 
MeV more bound compared to atomic mass evaluation

• neutron separation energies agree well with MBPT calculations based 
on NN+3NF chiral interactions

• need to quantify theoretical uncertainties



4

-10

-9

-8

-7

-6

NN+3N-induced

! N3LO

! N2LOopt

(a)

exp

-0.5

0.5 (b)

-10

-9

-8

-7

.

E
/A

[M
eV

]

NN+3N-full

! Λ3N = 400 MeV/c

! Λ3N = 350 MeV/c

(c)

exp

16O
24O

36Ca
40Ca

48Ca
52Ca

54Ca
48Ni

56Ni
60Ni

62Ni
66Ni

68Ni
78Ni

88Sr
90Zr

100Sn
106Sn

108Sn
114Sn

116Sn
118Sn

120Sn
132Sn

-0.5

0.5 (d)

FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Ground state energies of medium-mass and heavy nuclei 

• significant overbinding of heavy nuclei
• need to quantify and reduce theoretical uncertainties

Binder, Calci, Langhammer, Roth
Phys. Lett B736, 119 (2014)
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ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Ground state energies of medium-mass and heavy nuclei 

• significant overbinding of heavy nuclei
• need to quantify and reduce theoretical uncertainties

• EFT power counting?

• missing NN and/or many-body contributions? 

• optimized fitting procedures? 

Binder, Calci, Langhammer, Roth
Phys. Lett B736, 119 (2014)
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Equation of state: Many-body perturbation theory
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central quantity of interest: energy per particle E/N

• “hard” interactions require non-perturbative summation of diagrams

• with low-momentum interactions much more perturbative

• inclusion of 3N interaction contributions crucial!
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Equation of state of symmetric nuclear matter,
nuclear saturation

Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)

Overview NM Operators

What do (ordinary) nuclei look like?

Charge densities of magic
nuclei (mostly) shown
Proton density has to be
“unfolded” from ⇢

charge

(r),
which comes from elastic
electron scattering
Roughly constant interior
density with
R ⇡ (1.1–1.2 fm) · A1/3

Roughly constant surface
thickness

=) Like a liquid drop!

Dick Furnstahl TALENT: Nuclear forces
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“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)

intermediate (cD) and short-range 
(cE) 3NF couplings fitted to few-body 
systems at different resolution scales: 
E3H = �8.482 MeV r4He = 1.464 fm

c1, c3, c4 terms cD term cE term
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Results for the neutron matter equation of state

c1, c3, c4 terms cD term cE term

only long-range 3NF 
contribute in leading order 

neutron matter is a unique 
system for chiral EFT:

pure neutron matter
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FIG. 7. (Color online) Energy per
particle E/N of neutron matter as a
function of density ρ at the Hartree-
Fock level (left) and including second-
order contributions (right). The results
are based on evolved N3LO NN poten-
tials and N2LO 3N forces. Theoretical
uncertainties are estimated by varying
the NN cutoff (lines) and the 3N cutoff
(band for fixed " = 2.0 fm−1).

where {· · ·} denote 6j symbols and PL(cos θ ) are Legendre
polynomials. Keeping only L = 0 in Eq. (34) corresponds
to the angle-averaging approximation for the Pauli-blocking
operator, but we keep all L ! 6 for Vlow k and L ! 4 for V 3N.

Our second-order results for the neutron matter energy
ENN+3N,eff = E

(1)
NN+3N,eff + E

(2)
NN+3N,eff are presented in Fig. 7.

The different contributions are listed in Table I. We observe
that the cutoff dependence is reduced when going from first to
second order. This is as expected based on the nuclear matter
results [7,8], but for neutron matter the cutoff dependence
is significantly weaker already at the Hartree-Fock level.
The cutoff dependence increases with density and is less
than 1 MeV per particle for the densities studied in Fig. 7
over the cutoff range 1.8 fm−1 ! " ! 2.8 fm−1 and
2.0 fm−1 ! "3NF ! 2.5 fm−1. This band sets the scale
for omitted short-range many-body contributions, and we
discuss the theoretical uncertainties in the long-range parts in
Sec. III D. The weak cutoff dependence also demonstrates that
the average momentum in the system (which is smaller than
the Fermi momentum because ⟨p2

i ⟩ = 3/5k2
F) is well below the

cutoff.
Moreover, we have found that self-energy corrections to

the neutron matter energy are practically negligible. The
second-order energy with $ = 0 is within 200 keV of the self-
consistent results shown in Fig. 7. In addition, the second-order
energy contributions are always below 1.3 MeV per particle
in Table I, except for the large cutoff " = 2.8 fm−1 cases.
The second-order contributions practically only improve the
cutoff independence of the results without changing the energy
significantly. Moreover, for the lower cutoffs, the Hartree-
Fock energies are already reliable. These findings combined
suggest that neutron matter is perturbative at nuclear densities.
Therefore, we are confident that the P = 0 approximation
for V 3N is reliable, when evaluating the small second-order
contributions, and that it is reasonable to neglect the residual
3N-3N diagram E

(2)
5 .

D. Sensitivity to ci uncertainties

Next, we study the sensitivity of the second-order energy
to uncertainties in the ci coefficients that determine the

long-range part of N2LO 3N forces. This provides an update for
chiral potentials of the results of Ref. [25]. The ci coefficients
relate πN, NN, and 3N interactions, and the determination
from πN scattering is, within errors, consistent with the
extraction from NN waves. Present constraints for c1 and
c3 are c1 = −0.9+0.2

−0.5 GeV−1 and c3 = −4.7+1.5
−1.0 GeV−1 [32].

We note that, at N3LO, there are contributions that shift the
ci [10], and may lead to c3 coefficients that are smaller in
magnitude. In this study, we vary ci only in 3N forces, because
of lack of N3LO NN potentials that explore these ci variations.
However, based on the universality of Vlow k [8,12] (starting
from chiral potentials with two different ci sets [15,16]), we
do not expect large differences from varying c1 and c3 in
NN interactions, where these variations are also absorbed by
higher-order contact interactions that have to be adjusted to
reproduce NN scattering.

In Fig. 8, we show that the theoretical uncertainties of
the neutron matter energy are dominated by the uncertainties
in the ci coefficients, in particular the c3 part, compared
to the uncertainties of the many-body calculation or of
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FIG. 8. (Color online) Theoretical uncertainties of the second-
order energy with "/"3NF = 2.0 fm−1 as a function of density due
to the uncertainties in the c1 and c3 coefficients of 3N forces.
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First application to isospin asymmetric nuclear matter

• uncertainty bands determined 
by set of 7 Hamitonians

Drischler, KH, Schwenk,
in preparation

x =
np

np + nn
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First complete calculations of neutron matter at N3LO

• bands include uncertainties from many-body calculations and NN, 3NF and 4NF
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Symmetry energy and neutron skin constraints 

• neutron matter give tightest constraints

• in agreement with all other constraints

Sv =
⇥2E/N

⇥2x

����
�=�0,x=1/2

L =
3
8

⇥3E/N

⇥�⇥2x

����
�=�0,x=1/2

1303.4662

KH, Lattimer, Pethick, Schwenk, ApJ 773,11 (2013)

The Astrophysical Journal, 773:11 (14pp), 2013 August 10 Hebeler et al.

Figure 3. Allowed range for αL and ηL of the parameterizations (2) and (3) fit
to the saturation point of symmetric nuclear matter and to the calculated neutron
matter energy and pressure.
(A color version of this figure is available in the online journal.)

The parameters αL and ηL are extracted from the calcu-
lated bands for the neutron matter energy and pressure of
Figures 1 and 2. Our results are based on the blue bands (with
renormalization-group evolution) unless stated otherwise. We
have first checked that the parameterizations (2) and (3) provide
excellent global fits for the energy and pressure up to a density
n1 ≈ 1.1 n0. To determine αL and ηL, we sample their values
systematically and require that the resulting energy and pres-
sure be within the uncertainty bands shown in Figures 1 and 2
for densities from 0.45 n0 to 1.1 n0. This leads to the allowed
range for αL and ηL shown in Figure 3, with correlated limits
αL = 1.18–1.59 and ηL = 0.64–1.11.

The proton fraction x for matter in beta equilibrium is
determined by minimizing, for a given nucleon density, the total
energy per particle, Equation (2), plus the contributions from
electrons and from the rest mass of the nucleons. This amounts
to the condition that µn + mnc

2 = µp + mpc2 + µe, where µn

and µp are the neutron and proton chemical potentials without
the rest mass contribution, or equivalently

∂ϵ(n̄, x)
∂x

+ µe(n̄, x) − (mn − mp)c2 = 0 . (6)

For an ultrarelativistic, degenerate electron gas, the chemical
potential is given by µe(n̄, x) = h̄c (3π2xn0n̄)1/3. The allowed
ranges for αL and ηL imply ranges for the proton fraction and
the neutron and proton chemical potentials in beta equilibrium,
which are given for the saturation density n0 and for n0/2 in
Table 2. In the calculations we neglected the difference between
the neutron and proton masses (1.3 MeV), which is small
compared with µe ∼ 100 MeV. These ranges provide anchor
points for other equations of state.

The parameterizations (2) and (3) also make it possible to reli-
ably extract the symmetry energy Sv and its density derivative L,

Sv = 1
8

∂2ϵ(n̄, x)
∂x2

∣∣∣∣
n̄=1,x=1/2

and L = 3
8

∂3ϵ(n̄, x)
∂n̄∂x2

∣∣∣∣
n̄=1,x=1/2

.

(7)

Figure 4. Constraints for the symmetry energy Sv and the L parameter following
Lattimer & Lim (2013). The blue region shows our neutron matter constraints,
in comparison to bands based on different empirical extractions (for details,
see the text). The white area gives the overlap region of the different empirical
ranges.
(A color version of this figure is available in the online journal.)

Table 2
Proton Fraction x and Chemical Potentials µn and µp in Beta

Equilibrium for the Saturation Density n0 and for n0/2

n = n0 x µn µp

(MeV) (MeV)

min 0.040 54.2 −58.0
max 0.053 51.9 −71.5

n = n0/2

min 0.030 34.6 −46.1
max 0.033 34.3 −48.7

Note. The rows marked “min” and “max” give the range of the
uncertainty band.

The region for αL and ηL translates into an allowed region for
the symmetry energy Sv and the L parameter shown in Fig-
ure 4, after Lattimer & Lim (2013). In addition, we give in
Table 1 the predicted ranges for Sv and L for different γ values,
corresponding to different incompressibilities K = 210 MeV,
236 MeV and 260 MeV. The predicted range for γ = 4/3 nearly
spans the ranges for the other γ values. This demonstrates that
the extrapolation (2) is robust and that the theoretical uncertainty
due to the choice of γ is very weak and clearly much smaller
than the empirical bands shown in Figure 4.

In Figure 4, we compare the Sv and L region predicted by
our neutron matter results with values extracted from other data
(Lattimer & Lim 2013). It is striking that the neutron matter
results lead to the strongest constraints. These agree well with

4

rskin[
208Pb] = 0.14� 0.2 fm

KH, Lattimer, Pethick, Schwenk, PRL 105, 161102 (2010)

neutron skin constraint from 
neutron matter results:
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FIG. 3. The derivative of the neutron EOS at rn !
0.10 neutron!fm3 (in units of MeV fm3!neutron) vs the S value
in 208Pb for 18 Skyrme parameter sets. The cross is SkX.

provided by Wiringa, Fiks, and Fabrocini [17] and Akmal
and Pandharipande [18]. Generally the agreement with FP
is good up to about rn ! 0.10 neutron!fm3. At higher
density the differences in the various NN potentials [17]
and the very uncertain NNN potential become important.
Thus, although the FP neutron EOS serves as a reasonable
starting point, we do not have a truly fundamental theory
for neutron EOS. Any constraints coming from the prop-
erties of nuclei such as the neutron radii are extremely
important.

Given the difficulty of the JLAB measurement, it is
important to know to what extent a measurement of S
in one nucleus such as 208Pb will be applicable to other
nuclei. There are two points to investigate: the dependence
of S on mass and the dependence of S on the asymmetry
in the Fermi energy for protons and neutrons. For the first
case, I compare in Fig. 4 the S values for two nuclei near
the valley of stability (where the Fermi energies for protons
and neutrons are about equal to each other), those for 208Pb
and 138Ba. One observes a nearly linear relationship which
starts at S ! 0. For the second case, I compare in the
same figure the S value in 208Pb to the S value for 132Sn
where the neutrons at the Fermi surface are bound about
8 MeV less than the protons (see Figs. 4 and 5 in Ref. [6]).
Again there is a tight correlation, but the asymmetry in
the Fermi energy produces a systematic increase in the
neutron skin for all of the 18 SHF parameter sets. Thus
there are two clear mechanisms for producing a neutron
skin. One which is related to the asymmetry in the Fermi
energy is well determined within SHF, and another which
depends on the neutron EOS is undetermined unless one
adds a constraint to the neutron EOS. It is the Fermi-
energy asymmetry effect which dominates the increase in
the matter radii of neutron-rich light nuclei such as in the

S
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FIG. 4. The S value for 208Pb vs the S values for 132Sn (filled
circles) and 138Ba (plusses) for 18 Skyrme parameter sets. The
horizontal line is the SkX value for 208Pb.

Na isotopes [11]. Thus it is most important to accurately
determine the neutron rms radius in a stable nucleus such
as 208Pb. The neutron rms radius of 208Pb will provide
an important new constraint on the neutron EOS models
which are used to calculate the properties of neutron stars
[17]. The results discussed here are based upon a wide
variety of parametrizations for the Skyrme Hartree-Fock
model for finite nuclei and nucleon matter. It will be
important to explore the generality of these conclusions
within the Skyrme model as well as in other mean-field
models.
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the precise value of the measured electric dipole polariz-
ability of 208Pb: α

D
=(20.1±0.6) fm3.

It is the purpose of this work to examine possible corre-
lations between the dipole polarizability and the neutron-
skin thickness of 208Pb. Generally, to assess a linear cor-
relation between two observables A and B within one

given model, one resorts to a least-squares covariance
analysis, with the correlation coefficient

CAB =
|∆A∆B|

√

∆A2 ∆B2
, (1)

providing the proper statistical measure [20]. In Eq. (1)
the overline means an average over the statistical sam-
ple. A value of |CAB| = 1 means that the two observables
are fully correlated whereas CAB = 0 implies that they
are totally uncorrelated. Recently, the statistical mea-
sure CAB was used to study correlations between various
nuclear observables [8] in the context of the Skyrme SV-
min model [21]. In particular, it was concluded that good
isovector indicators that strongly correlate with the neu-
tron radius of 208Pb are its electric dipole polarizability as
well as neutron skins and radii of neutron-rich nuclei [8].
Indeed, by relying on the strong correlation between α

D

and rskin (CAB=0.98) predicted by such DFT calcula-
tions, Tamii et al. deduced a value of 0.156+0.025

−0.021 fm for
the neutron-skin thickness of 208Pb.
However, the correlation coefficient CAB cannot as-

sess systematic errors that reflect constraints and limita-
tions of a given model [8]. Such systematic uncertainties
can only emerge by comparing different models (or suffi-
ciently flexible variants of a model) and this is precisely
what has been done in this Letter. To assess the linear
dependence between two observables A and B for a sam-
ple of several models, the correlation coefficient Cmodels

AB is
now obtained by averaging over the predictions of those
models. Although the correlation coefficient Cmodels

AB de-
termined in such a way may not have a clear statistical
interpretation, it is nevertheless an excellent indicator of
linear dependence.
To this end, we have computed the distribution of E1

strength using both relativistic and non-relativistic DFT
approaches with different EDFs. In all cases, these self-
consistent models have been calibrated to selected global
properties of finite nuclei and some parameters of nuclear
matter. Once calibrated, these models are used without
any further adjustment to compute the E1 strength R

E1

using a consistent random-phase approximation. The
electric dipole polarizability is then obtained from the
inverse energy-weighted sum [8, 18, 22]:

α
D
=

8π

9
e2

∫

∞

0

ω−1R
E1
(ω) dω . (2)

The relation between α
D

and rskin for 208Pb is dis-
played in Fig. 1 using the predictions from the 48 EDFs
chosen in this work. In particular, the up-triangles

!"#$

"%&!

FIG. 1: (Color online) Predictions from 48 nuclear EDFs dis-
cussed in the text for the electric dipole polarizability and
neutron-skin thickness of 208Pb. Constrains on the neutron-
skin thickness from PREX [3] and on the dipole polarizability
from RCNP [19] have been incorporated into the plot.

mark predictions from a broad choice of Skyrme EDFs
that have been widely used in the literature: SGII,
SIII, SkI3, SkI4, SkM∗, SkO, SkP, SkX, SLy4, SLy6,
(see Refs. [23, 24] for the original references), Sk255
[25], BSk17 [26], LNS [27], and UNEDF0 and UNEDF1
[28]. In addition, we consider a collection of relativistic
and Skyrme EDFs that have been systematically varied
around an optimal model without a significant deterio-
ration in the quality of the fit. (This is particularly true
for the case of the isovector interaction which at present
remains poorly constrained.) Those results are marked
in Fig. 1 as NL3/FSU [18, 29] (circles), DD-ME [30]
(squares), and Skyrme-SV [21] (down-triangles). Note
that the “stars” in the figure are meant to represent the
predictions from the optimal models within the chain of
systematic variations of the symmetry energy. At first
glance a clear (positive) correlation between the dipole
polarizability and the neutron skin is discerned.

Yet on closer examination, one observes a signifi-
cant scatter in the results, especially for the standard
Skyrme models. In particular, by including the predic-
tions from all the 48 EDFs considered here, the correla-
tion Cmodels

AB =0.77 is obtained. However, as seen in Ta-
ble I, within each set of the systematically varied mod-

Brown, 
PRL 85, 5296 (2000)

Piekarewicz, 
PRC 85, 041302 (2012)



Symmetry energy and neutron skin constraints 

0.15 0.18 0.21

Rskin (fmD

3.2

3.3

3.4

3.5

R
p
(f
m
D

A

3.4 3.5 3.6

Rn (fmD

B

2.0 2.4 2.8

αD (fm
n D

C
Hagen et al.,

ab intio coupled cluster calculations of 
neutron skin and dipole polarizability of 48Ca



Constraints on the nuclear equation of state (EOS)LETTER
doi:10.1038/nature09466

A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chain Monte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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Demorest et al., Nature 467, 1081 (2010)

Mmax = 1.65M� � 1.97± 0.04 M�

Calculation of neutron star properties require EOS up to high densities.

Strategy: 
Use observations to constrain the high-density part of the nuclear EOS.

New constraints from recent observations:

Fig. 1. Radial velocities and spectrum of the white dwarf companion
to PSR J0348+0432. (A) Radial velocities of the WD companion to PSR
J0348+0432 plotted against the orbital phase (shown twice for clarity). Over-
plotted is the best-fit orbit of the WD (blue line) and the mirror orbit of the
pulsar (green). Error bars indicate 1-s confidence intervals. (B) Details of the
fit to the Balmer lines (Hb to H12) in the average spectrumof theWD companion

to PSR J0348+0432 created by the coherent addition of 26 individual spectra
shifted to zero velocity. Lines from Hb (bottom) to H12 are shown. The red
solid lines are the best-fit atmospheric model (see text). Two models, one with
Teff = 9900 K and log10g = 5.70 and one with Teff = 10,200 K and log10 g =
6.30, each ∼ 3-s off from the best-fit central value (including systematics), are
shown for comparison (dashed blue lines).

Fig. 2. Mass measurement of the white dwarf companion to PSR
J0348+0432. (A) Constraints on Teff and g for the WD companion to PSR
J0348+0432 compared with theoretical WD models. The shaded areas depict
the c2 − c2min = 2.3, 6.2, and 11.8 intervals (equivalent to 1-, 2-, and 3-s) of
our fit to the average spectrum. Dashed lines show the detailed theoretical

cooling models of (11). Continuous lines depict tracks with thick envelopes for
masses up to ∼0.2M◉ that yield the most conservative constraints for the mass
of the WD. (B) Finite-temperature mass-radius relations for our models to-
gether with the constraints imposed from modeling of the spectrum. Low
mass–high temperature points are an extrapolation from lower temperatures.
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A Massive Pulsar in a 

Compact Relativistic Binary

John Antoniadis,* Paulo C. C. Freire, Norbert Wex, Thomas M. Tauris, Ryan S. Lynch, 
Marten H. van Kerkwijk, Michael Kramer, Cees Bassa, Vik S. Dhillon, Thomas Driebe, 
Jason W. T. Hessels, Victoria M. Kaspi, Vladislav I. Kondratiev, Norbert Langer, 
Thomas R. Marsh, Maura A. McLaughlin, Timothy T. Pennucci, Scott M. Ransom, 
Ingrid H. Stairs, Joeri van Leeuwen, Joris P. W. Verbiest, David G. Whelan

Introduction: Neutron stars with masses above 1.8 solar masses (M�), possess extreme gravitational 
fi elds, which may give rise to phenomena outside general relativity. Hitherto, these strong-fi eld devia-
tions have not been probed by experiment, because they become observable only in tight binaries 
containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves 
can be tested. Understanding the origin of such a system would also help to answer fundamental ques-
tions of close-binary evolution.

Methods: We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved 
optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to 
derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.

Results: We fi nd that the white dwarf has a mass of 0.172 ± 0.003 M�, which, combined with orbital 
velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M�. Additionally, over a span of 2 years, 
we observed a signifi cant decrease in the orbital period, P�b

obs = –8.6 ± 1.4 µs year�1 in our radio-
timing data.

Discussion: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass 
of 2 M� and independently confi rms the existence of such massive neutron stars in nature. For these 

masses and orbital period, general relativity 
predicts a significant orbital decay, which 
matches the observed value, P�b

obs/ P�b
GR = 1.05 

± 0.18.
The pulsar has a gravitational binding 

energy 60% higher than other known neu-
tron stars in binaries where gravitational-
wave damping has been detected. Because 
the magnitude of strong-field deviations 
generally depends nonlinearly on the bind-
ing energy, the measurement of orbital 
decay transforms the system into a gravita-
tional laboratory for an as-yet untested grav-
ity regime. The consistency of the observed 
orbital decay with general relativity  therefore 
supports its validity, even for such extreme 
gravity-matter couplings, and rules out 
strong-fi eld phenomena predicted by physi-
cally well-motivated alternatives. Moreover, 
our result supports the use of general rela-
tivity–based templates for the detection of 
gravitational waves from merger events with 
advanced ground-based detectors.

Lastly, the system provides insight into 
pulsar-spin evolution after mass accretion. 
Because of its short merging time scale of 
400 megayears, the system is a direct chan-
nel for the formation of an ultracompact x-ray 
binary, possibly leading to a pulsar-planet 
system or the formation of a black hole.

Artist’s impression of the PSR J0348+0432 system. 
The compact pulsar (with beams of radio emission) produces 
a strong distortion of spacetime (illustrated by the green 
mesh). Conversely, spacetime around its white dwarf com-
panion (in light blue) is substantially less curved. According 
to relativistic theories of gravity, the binary system is subject 
to energy loss by gravitational waves.
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companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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Neutron star radius constraints

   incorporation of beta-equilibrium: neutron matter         neutron star matter

parametrize piecewise high-density extensions of EOS:

• use polytropic ansatz

• range of parameters
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Constraints on the nuclear equation of state

use the constraints:

vs(�) =
�

dP/d⇥ < c

Mmax > 1.97 M�

causality

recent NS observations

constraints lead to significant reduction of EOS uncertainty band

KH, Lattimer, Pethick, Schwenk, ApJ 773,11 (2013)



vs(�) =
�

dP/d⇥ < c

causality

fictitious NS mass

Mmax > 2.4 M�

increased          systematically reduces width of bandMmax

use the constraints:

Constraints on the nuclear equation of state

KH, Lattimer, Pethick, Schwenk, ApJ 773,11 (2013)



• current radius prediction for typical            neutron star:  
• low-density part of EOS sets scale for allowed high-density extensions 
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Constraints on neutron star radii
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• current radius prediction for typical            neutron star:  
• low-density part of EOS sets scale for allowed high-density extensions 
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• constructed 3 representative EOS compatible with uncertainty bands for 
astrophysical applications: soft, intermediate and stiff

• allows to probe impact of current theoretical EOS uncertainties on 
astrophysical observables

Representative set of EOS

KH, Lattimer, Pethick, Schwenk, ApJ 773, 11 (2013)
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FIG. 2: Scaled power spectral density of the GW signal for
the Shen (black solid line) and the eosUU (blue line) EoSs
compared to the Advanced LIGO (red dashed line) and ET
(black dashed line) unity SNR sensitivities. The inset shows
the GW amplitude of the + polarization at 50 Mpc for the
Shen EoS.

gles) belong to simulations for the MIT60 and Glendnh3
EoSs, which both have strikingly different M-R relations
(dashed lines in Fig. 1). Note that a SQM EoS could
lead to discriminating observational features, e.g. in the
cosmic ray flux [20, 22], but the particular model MIT60
is ruled out by the 1.97M⊙ NS of [3]. The Glendnh3 EoS
seems in conflict with theoretical knowledge of EoS prop-
erties at subnuclear densities [4]. Ignoring the two out-
liers, thefpeak −Rmax correlation (crosses only) becomes
even stronger. Already one determination of fpeak could
therefore seriously constrain the M-R relation and conse-
quently the nuclear EoS. Additionally, simulated merg-
ers of 1.2 M⊙-1.5 M⊙ binaries for selected EoSs (circles)
demonstrate that the relation between fpeak and Rmax is
not very sensitive to the initial mass ratio [11]. Squares
in Fig. 3 display results for 1.2 M⊙-1.2 M⊙ mergers. For
those fpeak is clearly lower [11] with differences being
larger for smaller Rmax. But also for the symmetric bi-
naries with lower mass a correlation seems to exist. We
stress that the total binary mass Mtot will be measurable
by the GW inspiral signal [43].
fpeak turns out to correlate also with other NS proper-

ties: From Fig. 4 (left panel) a close relation between the
radius R1.35 of a 1.35 M⊙ star (or alternatively its com-
pactnessGM/(c2R)) and fpeak is evident. Again only the
MIT60 and Glendnh3 EoSs occur as outliers. This find-
ing is not surprising, because the TOV solutions show
already an approximate correlation between R1.35 and
Rmax. A similar coupling is found between fpeak and
the maximum central density ρmax of non-rotating NSs,
where higher ρmax yield higher fpeak.
However, no clear correlation exists between fpeak

and the maximum compactness of non-spinning NSs or
Mmax, though typically a lower Mmax gives a higher
fpeak, and fpeak > 2.8 kHz seems incompatible with
Mmax > 2.4 M⊙. We propose the following expla-
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FIG. 3: Peak frequency of the postmerger GW emission vs.
radius of the maximum-mass TOV solution. Blue cases are
excluded by [3]. See text for symbols.
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FIG. 4: Peak frequency vs. radius of a 1.35 M⊙ NS (left) and

vs.
√

Mtot/R3
max in geometrical units (right) with Mtot being

the binary mass. Symbols have same meaning as in Fig. 3.

nation for the fact that the postmerger GW emission
is determined by Rmax. Numerical calculations have
shown that for any EoS the frequency of the f-mode,
which generates the GW radiation at fpeak [42], depends
nearly linearly on the square root of the mean density
(M/R3)1/2 [44]. Since we fix Mtot, the mass-dependence
drops out. Assuming that the radius of the DRO re-
lates to the M-R relation of non-rotating NSs [47], we
end up with fpeak ∝ R−1.5

max . This hypothesis is verified
in the right panel of Fig. 4, where fpeak is plotted versus
(Mtot/R3

max)
1/2 and except for the mentioned outliers a

clear power-law scaling is visible.
Despite an estimated detection rate of only 0.1 to 1

events/yr for Advanced LIGO (accounting for random
orientation and adopting the “realistic” and the “high”
merger rates of [18]) the relations found in this work may
prove very useful, because already a single measurement
is likely to determine Rmax and R1.35 to within some
100 m. This will place significant constraints on the
M-R relation and thus the EoS (see [2, 45] for the in-
verse procedure). These prospects appear superior to the

Bauswein and Janka, PRL 108, 011101 (2012),
Bauswein, Janka, KH, Schwenk, PRD 86, 063001

• simulations of NS binary mergers show strong correlation between between
           of the GW spectrum and the radius of a NS

• measuring         is key step for constraining EOS systematically at large  
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FIG. 9: Peak frequency of the postmerger GW emission ver-
sus the radius of the maximum-mass configuration of non-
rotating NSs for different EoSs. Red symbols correspond to
microphysical EoSs with a consistent temperature treatment
(class i), black symbols show data points for barotropic mi-
crophysical EoSs (without temperature and electron fraction
dependence) (class ii), green (smaller) symbols belong to EoSs
implemented as piecewise polytropes fitting barotropic micro-
physical EoSs (class iii), and blue symbols display results for
microphysical EoSs at low densities with high-density exten-
sions by piecewise polytropes (class iv). Classes (ii) to (iv)
are supplemented with an ideal-gas component for mimicking
thermal effects. Plus signs indicate EoSs which are excluded
by the observation of a 1.97 M⊙ pulsar [10]. EoSs describing
absolutely stable strange quark matter are denoted by trian-
gles. Note that the MIT60 EoS (red triangle) is ruled out by
the 1.97 M⊙ mass limit.

The EoSs of class (iv) (blue) cover a broad range of pos-
sible behaviors at intermediate and high densities, which
are partially very extreme (e.g., very high pressure and
sound speed at high densities, see Figs. 2 and 3). There-
fore, it is expected that the resulting variations will also
span a broad range, which is however consistent with
the chiral effective field theory constraints at saturation
densities and below. The models of class (iii) involve a
twofold simplification that can explain the larger devia-
tions from the correlations. First, the fits of the EoSs do
not perfectly match the underlying microphysical model
(e.g. in the sound speed, see [42]), leading to peak fre-
quencies which may be slightly different from those ob-
tained by the original model. Second, due to the usage
of the fit also the stellar parameters of nonrotating NSs
differ slightly from those obtained with the original EoSs.
Bear in mind that the same reasoning for EoSs of class
(iii) and class (iv) EoSs also applies to all following rela-
tions discussed in this paper (Fig. 13 to 21).
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FIG. 10: Peak frequency of the postmerger GW emission ver-
sus the radius of a nonrotating NS with 1.8 M⊙ for different
EoSs. Symbols have the same meaning as in Fig. 9.
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FIG. 11: Peak frequency of the postmerger GW emission ver-
sus the radius of a nonrotating NS with 1.6 M⊙ for different
EoSs. Symbols have the same meaning as in Fig. 9.

B. Fits and residuals

To quantify the discussion above and to introduce a
measure for the scatter inherent to the presented rela-
tions, we fit power laws of the type RTOV = a·(fpeak)b+c
through the data points of Figs. 9-12 with a, b, c being pa-
rameters to be obtained by a least-square fit. RTOV de-

Gravitational wave signals from 
neutron star binary mergers



• develop the most advanced chiral Hamiltonians to enable 
controlled microscopic calculations of matter and light as well as 
medium-mass nuclei 

• improve EOS constraints at high densities (LOFT, GW waves, ?),
explore limits of chiral EFT interactions

• extend EOS calculations to finite temperature

• calculate response functions and neutrino interactions in matter
 
• benchmarks between different many-body frameworks based on 
a set of Hamiltonians

• derivation of systematic uncertainty estimates by 
performing order-by-order calculations in chiral expansion

Future directions, open problems 
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FIG. 2. (Color online) Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron
matter at the Hartree-Fock level. The bands are obtained by varying the 3N/4N cutoff Λ = 2 − 2.5 fm−1. For the two-pion-
exchange–contact and the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT

and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology.

ity of the energy to the single-particle spectrum used.
We find that the energy changes from second to third
order, employing a free or Hartree-Fock spectrum, by
0.8, 0.4, 1.3MeV (1.4, 0.9, 2.7MeV) per particle at n0/2
(n0) for the EGM 450/500, 450/700, EM 500 N3LO po-
tentials, respectively. The results, which include all these
uncertainties, are displayed by the bands in Fig. 1. Un-
derstanding the cutoff dependence and developing im-
proved power counting schemes remain important open
problems in chiral EFT [21]. For the neutron matter en-
ergy at n0, our first complete N3LO calculation yields
14.1 − 21.0MeV per particle. If we were to omit the
results based on the EM 500 N3LO potential, as it con-
verges slowest at n0, the range would be 14.1−18.4MeV.

As we find relatively large contributions from N3LO
3N forces, it is important to study the EFT convergence
from N2LO to N3LO. This is shown in Fig. 3 for the
EGM potentials (N2LO is not available for EM), where
the N3LO results are found to overlap with the N2LO
band across a ±1.5MeV range around 17MeV at satura-
tion density. As expected from the net-attractive N3LO
3N contributions in Fig. 2, the N3LO band yields lower
energies. For the N2LO band, we have estimated the the-
oretical uncertainties in the same way, and the neutron
matter energy ranges from 15.5 − 21.4MeV per particle

at n0. The theoretical uncertainty is reduced from N2LO
to N3LO to 14.1 − 18.4MeV, but not by a factor ∼ 1/3
based on the power counting estimate. This reflects the
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FIG. 3. (Color online) Neutron matter energy per particle as
a function of density at N2LO (upper/blue band that extends
to the dashed line) and N3LO (lower/red band). The bands
are based on the EGM NN potentials and include uncertainty
estimates as in Fig. 1.
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FIG. 11. (Color online) Energy per particle versus density for all individual N3LO 3N- and 4N-force contributions to symmetric
nuclear matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoff ⇤ = 2 � 2.5 fm�1. For the
two-pion-exchange–contact, the relativistic-corrections 3N forces, and the short-range 4N forces, the different bands correspond
to the different NN contacts, CT and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram
illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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FIG. 11. (Color online) Energy per particle versus density for all individual N3LO 3N- and 4N-force contributions to symmetric
nuclear matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoff ⇤ = 2 � 2.5 fm�1. For the
two-pion-exchange–contact, the relativistic-corrections 3N forces, and the short-range 4N forces, the different bands correspond
to the different NN contacts, CT and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram
illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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nuclear matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoff ⇤ = 2 � 2.5 fm�1. For the
two-pion-exchange–contact, the relativistic-corrections 3N forces, and the short-range 4N forces, the different bands correspond
to the different NN contacts, CT and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram
illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.

Krüger, Tews, KH, Schwenk
PRC88, 025802 (2013)
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This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f
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= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c
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values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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FIG. 11. (Color online) Energy per particle versus density for all individual N3LO 3N- and 4N-force contributions to symmetric
nuclear matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoff ⇤ = 2 � 2.5 fm�1. For the
two-pion-exchange–contact, the relativistic-corrections 3N forces, and the short-range 4N forces, the different bands correspond
to the different NN contacts, CT and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram
illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.

Krüger, Tews, KH, Schwenk
PRC88, 025802 (2013)

Conclusions/Indications:
• N3LO 3N contributions significant
• N3LO 4N contributions small 
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Goal
Calculate matrix elements of 3NF in a momentum partial-wave decomposed 

form, which is suitable for all these few- and many-body frameworks.

Challenge
Due to the large number of matrix elements, the traditional way of 

computing matrix elements requires extreme amounts of computer resources.

Strategy
Development of a general framework, which allows 

to decompose efficiently arbitrary local 3N interactions.

Chiral 3N forces at subleading order (N3LO)
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• perfect agreement with results based on traditional approach

• speedup factors of >1000

• very general, can also be applied to pion-full EFT, N4LO terms, currents...



CONTENTS 23

cuto↵ of ⇤ = 2.0 fm�1 to improve the convergence of the MBPT. Other calculations

show the predictive power of the method for shell structure and pairing gaps [62],

excitation spectra [59], and properties of proton-rich nuclei [61]. On-going work seeks

to extend the framework to include continuum e↵ects for weakly bound or unbound

states, to develop nonperturbative methods for valence shell interactions [63], to relate

to phenomenological models, and to quantify theoretical uncertainties.

4.2. Ab initio calculations with three-nucleon forces

The frontier for RG-based ab initio calculations of finite nuclei using microscopic inter-

nucleon forces is the inclusion of 3NF. The SRG has made possible the inclusion of

consistently evolved 3NF in a harmonic oscillator basis [27, 30], which means 3NF

are present in the initial Hamiltonian but also induced as a result of RG evolution.The oxygen anomaly - impact of 3N forces 
include “normal-ordered” 2-body part of 3N forces (enhanced by core A) 

leads to repulsive interactions between  
can understand partly based on Pauli  

d3/2 orbital remains unbound from 16O to 28O 

first microscopic explanation of the oxygen anomaly 
Otsuka, Suzuki, Holt, AS, Akaishi (2010) 

Figure 19. Interaction between valence neutrons and a core nucleon in an oxygen
isotope through a three-body force [33].
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Figure 20. Predictions for two-neutron separation energy and pairing gaps in calcium
isotopes including three-body forces compared to new experimental measurements [60].

Incorporation in different many-body frameworks

valence shell model

Hyperspherical harmonics

coupled cluster methodno-core shell model

Faddeev,
Faddeev-Yakubovski

Holt (TRIUMF), Menendez, Simonis,
Schwenk (TU Darmstadt)

Binder, Hagen, Papenbrock 
(Oak Ridge)

Roth (TU Darmstadt),
Navratil (TRIUMF), Vary (Iowa)

Bacca (TRIUMF), Barnea (Hebrew U.)
Nogga (Juelich), Witala (Kracow) 

Many-body
perturbation theory

Self-consistent
Greens function 

In-medium SRG
Bogner (MSU), Hergert (OSU),
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One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer 
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Green’s functions in many-body theory 
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FIG. 1: (Color online) Left. One of the diagrams included in the correlated self-energy, Σ̃(ω). Arrows up (down) refer to quasiparticle
(quasihole) states, the Π(ph) propagators include collective ph and charge-exchange resonances, and the gII include pairing between two

particles or two holes. The FRPA method sums analogous diagrams, with any numbers of phonons, to all orders [21, 25]. Right. Single-

particle spectral distribution for neutrons in 56Ni, obtained from FRPA. Energies above (below) EF are for transitions to excited states of
57Ni (55Ni). The quasiparticle states close to the Fermi surface are clearly visible. Integrating over r [Eq. (4)] gives the SFs reported in Tab. I.

poles give the experimental energy transfer for nucleon pickup

(knockout) to the excited states of the systems with A+1 (A-1)

particles. The propagator (2) is obtained by solving the Dyson

equation [g(ω) = g(0)(ω) + g(0)(ω) Σ⋆(ω) g(ω)], where

g(0)(ω) propagates a free nucleon. The information on nuclear

structure is included in the irreducible self-energy, which was

split into two contributions:

Σ⋆(r, r′;ω) = ΣMF (r, r′;ω) + Σ̃(r, r′;ω) . (3)

The term ΣMF (ω) includes both the nuclear mean field (MF)

and diagrams describing two-particle scattering outside the

model space, generated using a G-matrix resummation [24].

As a consequence, it acquires an energy dependence which

is induced by SRC among nucleons [23]. The second term,

Σ̃(ω), includes the LRC. In the present work, Σ̃(ω) is calcu-

lated in the so-called Faddeev random phase approximation

(FRPA) of Refs. [21, 25]. This includes diagrams for particle-

vibration coupling at all orders and with all possible vibration

modes, see Fig. 1, as well as low-energy 2p1h/2h1p configu-

rations. Particle-vibration couplings play an important role in

compressing the single-particle spectrum at the Fermi energy

to its experimental density. However, a complete configura-

tion mixing of states around the Fermi surface is still missing

and would require SM calculations.

Each spectroscopic amplitude ψA±1(r) appearing in Eq. (2)

has to be normalized to its respective SF as

Zα =

∫

dr |ψA±1α (r)|2 =
1

1 −
∂Σ⋆
α̂α̂
(ω)

∂ω

∣

∣

∣

∣

∣

∣

∣

∣

ω=±(EA±1α −E
A
0
)

, (4)

where Σ⋆
α̂α̂
(ω) ≡< ψ̂α|Σ

⋆(ω)|ψ̂α > is the matrix element of

the self-energy calculated for the overlap function itself but

normalized to unity (
∫

dr |ψ̂α(r)|
2 = 1). By inserting Eq. (3)

into (4), one distinguishes two contributions to the quenching

of SFs. For model spaces sufficiently large, all low-energy

physics is described by Σ̃(ω). Then, the derivative of ΣMF (ω)

accounts for the coupling to states outside the model space

and estimates the effects of SRC alone [33].

In general, the SC self-energy (3) is a functional of the one-

body propagator itself, Σ⋆ = Σ⋆[g]. Hence the FRPA equa-

tions for the self-energy and the Dyson equation have to be

solved iteratively. The mean-field part, ΣMF [g], was calcu-

lated exactly in terms of the fully fragmented propagator (2).

For the FRPA, this procedurewas simplified by employing the

Σ̃[gIPM] obtained in terms of a MF-like propagator

gIPM(r, r′;ω) =
∑

n /∈F

(φn(r))
∗ φn(r

′)

ω − εIMPn + iη
+
∑

k∈F

φk(r) (φk(r
′))∗

ω − εIMP
k
− iη

,

(5)

which is updated at each iteration to approximate Eq. (2) with

a limited number of poles. Eq. (5) defines a set of undressed

single-particle states that can be taken as a basis for SM ap-

plications. This feature will be used below to estimate the im-

portance of configuration mixing effects on the quenching of

spectroscopic factors. The present calculations employed the

N3LO interaction from chiral perturbation theory [26] with a

modification of the tensor monopoles to correct for missing

three-nucleon interactions [27].

Results.— The calculated single-particle spectral function

[S 56Ni(r,ω) =
1
π
|g(r = r′;ω)|2] is shown in Fig. 1 for the case

of neutron transfer on 56Ni. This picture puts in evidence the

quasiparticle and quasihole states associated with valence or-

bits in the 0p1 f shell. The corresponding SFs are reported

in Tab. I, including both protons and neutrons. The first col-

umn is obtained by including only the derivative of ΣMF (ω)

when calculating Eq. (4). Since N3LO is rather soft com-

pared to other realistic interactions the effect of SRC is rela-

tively small. From other models one could expect a quenching

up to about 10% [16], as confirmed by recent electron scatter-

ing experiments [14, 15, 28]. This difference would not affect

sensibly the conclusions below. The complete FRPA result for

SFs is given in the second column. For the transition between

the 56Ni and 57Ni ground states, our result agrees with knock-

C. Barbieri, PRL 103,202520 (2009)

3BF beyond the EoS

Shear viscosity with CBF

Benhar & Valli, PRL 99, 232501 (2007)
Benhar & Carbone, arxiv:0912.0129

PNS dynamical evolution with BHF

Burgio et al., arxiv:1106.2736

• Many-body modelers are aiming at complete descriptions!
• Consistent description of transport coefficients
• Response of nuclear & neutron matter
• Transport coefficients & dynamical evolution of NS 27 / 30
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Details!

Introduction

VNN
V3N

V3N

V3N

VNN

VNN

V3N

V3N

VNN

V3N

Required inputs:

1. consistent NN and 3N forces at N3LO in partial-wave-decomposed form

2. softened forces for judging approximations and pushing to heavier nuclei

Barbieri (Surrey), Duguet, Soma (CEA)
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• elimination of coupling between low- and high momentum components,
          simplified many-body calculations

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformation also changes three-body (and higher-body) interactions.

Systematic decoupling of high-momentum physics:
The Similarity Renormalization Group



Applications of chiral 3N forces at N3LO

Problem:
Basis size for converged results of ab initio calculations including 

3N forces grows rapidly with the number of particles. 
Calculations limited to light nuclei.  

Strategy:
Use SRG transformations to decouple low- and high momentum states.

Required basis size decreases drastically.

Hebeler PRC(R) 85, 021002 (2012)

First implementation of consistent 
SRG evolution of 3NF in a momentum basis:
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First implementation of consistent 
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• 3NF contributions treated in Hartree-Fock approximation

• no indications for unnaturally large 4N force contributions

KH and Furnstahl, PRC 87, 031302(R) (2013)



‣ different decoupling patterns (e.g. Vlow k)

‣ improved efficiency of evolution

‣ suppression of many-body forces

k2

k�2

• transformation of evolved interactions to oscillator basis

‣ application to nuclei, complimentary to HO evolution
(already implemented and tested) 

• study of various generators

• application to infinite systems

‣ equation of state (first applications to neutron matter)

‣ systematic study of induced many-body contributions

Overview RG Summary Extras Flow Results History Eqs. Problem

Two ways to decouple with RG equations
“Vlow k ”

Λ
0

Λ
1

Λ
2

k’

k

Lower a cutoff �i in k , k �,
e.g., demand
dT (k , k �; k2)/d� = 0

Similarity RG

λ
0

λ
1

λ
2

k’

k

Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]

Dick Furnstahl RG in Nuclear Physics• evolution of arbitrary operators

‣ needed for all observables

‣ study of correlations in nuclear systems            factorization

3NF evolution in momentum basis:
Current developments and applications

a very good agreement of the converged ground-state
energies, with the IT-NCSM giving 1 to 2 MeV more
binding. This difference is consistent with the contribu-
tions expected from triples corrections and the missing
3N matrix elements with E3max > 14. The latter point
has been confirmed by comparing to lower E3max cuts.
Altogether, the CCSD calculations for 16O with soft
SRG-evolved NN þ 3N Hamiltonians in NO2B approxi-
mation provide a ground-state energy within 1% to 2%
of the IT-NCSM results with the exact 3N interaction.
Using CCSD with the NO2B approximation we can now
study the systematics of ground-state energies with
SRG-evolved chiral NN þ 3N Hamiltonians beyond
16O. Following the analysis of Ref. [18] we discuss the
! dependence observed with the NN-only, the NN þ
3N-induced, and the NN þ 3N-full Hamiltonians for
16O and 24O, shown in Fig. 4, and for 40Ca and 48Ca,
shown in Fig. 5. For all nuclei we observe the same pattern:
The NN-only Hamiltonian exhibits strong ! dependence
of the converged ground-state energies hinting at induced
3N interactions. Their inclusion at the NN þ 3N-induced
level eliminates the ! dependence, thus providing a
strong indication that induced 4N contributions originat-
ing from the initial NN are irrelevant for ground-state
energies. The converged energies, therefore, correspond
to the solutions for the initial chiral NN interaction.
We obtain "120:2ðþ0:8Þ MeV for 16O ground-state
energy, "152:1ðþ0:5Þ MeV for 24O, "343ðþ6Þ MeV for

40Ca, and "392ðþ7Þ MeV for 48Ca using the NN þ
3N-induced Hamiltonian at ! ¼ 0:04 fm4 for emax ¼ 14.
The numbers in parenthesis give the changewhen going to
! ¼ 0:08 fm4 as a measure for the residual! dependence.
These results are in very good agreement with the CC
results reported in Refs [23,24] for the bare chiral NN
interaction.
When including the initial 3N interaction, i.e., when

using the NN þ 3N-full Hamiltonian, the ! dependence
reemerges, indicating that 4N terms induced by the initial
3N interaction become sizable. These CCSD results
confirm the findings of Ref. [18] and extend the system-
atics to heavier nuclei.
In addition to the standard chiral 3N interaction [17]

with cutoff momentum of 500 MeV, we also employ a
chiral 3N interaction with a modified cutoff of 400 MeV
and cE ¼ 0:098 refitted to reproduce the 4He binding
energy. We keep the value cD ¼ "0:2 as in the standard
3N interaction. Based on the findings of Ref. [17] a
selective change of the 3N cutoff or of cE will not affect
the triton lifetime. Effectively the lower cutoff reduces the
strength of the two-pion terms of the 3N interaction and
limits them to lower momenta. As a result the ! depen-
dence and thus the induced 4N contributions are reduced
significantly. This allows for a quantitative comparison
of the NN þ 3N-full predictions with experimental
binding energies. We obtain ground-state energies of
"126:4ð"1:9Þ MeV for 16O, "164:8ð"2:8Þ MeV for
24O, "357ð"6Þ MeV for 40Ca, and "403ð"8Þ MeV for
48Ca using ! ¼ 0:04 fm4 with the change when going to
! ¼ 0:08 fm4 given in parenthesis. The agreement with
experiment is remarkable. For 16O and 24O the predictions
based on the chiral NN þ 3N Hamiltonian reproduce the
experimental energies within the theoretical uncertainties.
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a very good agreement of the converged ground-state
energies, with the IT-NCSM giving 1 to 2 MeV more
binding. This difference is consistent with the contribu-
tions expected from triples corrections and the missing
3N matrix elements with E3max > 14. The latter point
has been confirmed by comparing to lower E3max cuts.
Altogether, the CCSD calculations for 16O with soft
SRG-evolved NN þ 3N Hamiltonians in NO2B approxi-
mation provide a ground-state energy within 1% to 2%
of the IT-NCSM results with the exact 3N interaction.
Using CCSD with the NO2B approximation we can now
study the systematics of ground-state energies with
SRG-evolved chiral NN þ 3N Hamiltonians beyond
16O. Following the analysis of Ref. [18] we discuss the
! dependence observed with the NN-only, the NN þ
3N-induced, and the NN þ 3N-full Hamiltonians for
16O and 24O, shown in Fig. 4, and for 40Ca and 48Ca,
shown in Fig. 5. For all nuclei we observe the same pattern:
The NN-only Hamiltonian exhibits strong ! dependence
of the converged ground-state energies hinting at induced
3N interactions. Their inclusion at the NN þ 3N-induced
level eliminates the ! dependence, thus providing a
strong indication that induced 4N contributions originat-
ing from the initial NN are irrelevant for ground-state
energies. The converged energies, therefore, correspond
to the solutions for the initial chiral NN interaction.
We obtain "120:2ðþ0:8Þ MeV for 16O ground-state
energy, "152:1ðþ0:5Þ MeV for 24O, "343ðþ6Þ MeV for

40Ca, and "392ðþ7Þ MeV for 48Ca using the NN þ
3N-induced Hamiltonian at ! ¼ 0:04 fm4 for emax ¼ 14.
The numbers in parenthesis give the changewhen going to
! ¼ 0:08 fm4 as a measure for the residual! dependence.
These results are in very good agreement with the CC
results reported in Refs [23,24] for the bare chiral NN
interaction.
When including the initial 3N interaction, i.e., when

using the NN þ 3N-full Hamiltonian, the ! dependence
reemerges, indicating that 4N terms induced by the initial
3N interaction become sizable. These CCSD results
confirm the findings of Ref. [18] and extend the system-
atics to heavier nuclei.
In addition to the standard chiral 3N interaction [17]

with cutoff momentum of 500 MeV, we also employ a
chiral 3N interaction with a modified cutoff of 400 MeV
and cE ¼ 0:098 refitted to reproduce the 4He binding
energy. We keep the value cD ¼ "0:2 as in the standard
3N interaction. Based on the findings of Ref. [17] a
selective change of the 3N cutoff or of cE will not affect
the triton lifetime. Effectively the lower cutoff reduces the
strength of the two-pion terms of the 3N interaction and
limits them to lower momenta. As a result the ! depen-
dence and thus the induced 4N contributions are reduced
significantly. This allows for a quantitative comparison
of the NN þ 3N-full predictions with experimental
binding energies. We obtain ground-state energies of
"126:4ð"1:9Þ MeV for 16O, "164:8ð"2:8Þ MeV for
24O, "357ð"6Þ MeV for 40Ca, and "403ð"8Þ MeV for
48Ca using ! ¼ 0:04 fm4 with the change when going to
! ¼ 0:08 fm4 given in parenthesis. The agreement with
experiment is remarkable. For 16O and 24O the predictions
based on the chiral NN þ 3N Hamiltonian reproduce the
experimental energies within the theoretical uncertainties.
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column headings) using the NO2B approximation for a range of
flow parameters: ! ¼ 0:04 fm4 (d), 0:05 fm4 (r), 0:0625 fm4

(m), and 0:08 fm4 (j). The filled symbols for the NN þ 3N-full
Hamiltonian are for the standard chiral 3N interaction with
cutoff 500 MeV, the open symbols for a modified 3N interaction
with cutoff 400 MeV (see text).
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RG evolution of 3N interactions in momentum space
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|pq��1 |pq��2 |pq��3
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3
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33

|pq�⇥ i � |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz⇥

dVij

ds
= [[Tij , Vij ] , Tij + Vij ] ,

dV123

ds
= [[T12, V12] , V13 + V23 + V123]

+ [[T13, V13] , V12 + V23 + V123]
+ [[T23, V23] , V12 + V13 + V123]
+ [[Trel, V123] , Hs]

• represent interaction in basis

• explicit equations for NN and 3N flow equations

Bogner, Furnstahl, Perry PRC 75, 061001(R) (2007)

Hebeler PRC(R) 85, 021002 (2012)
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• truncated interaction fails completely to reproduce original phase shifts

• problem: low- and high momentum states are coupled by interaction!



First Quantum Monte Carlo 
based on chiral EFT interactions

Problem:
Current QMC frameworks can only applied to local Hamiltonians. 
Conventional interactions derived within chiral EFT are nonlocal.

• regulate in coordinate space in relative distance: f(r) = 1� e�(r/R0)
4

• use isospin dependent terms instead of non-local operators at NLO

Strategy:
Use freedom in the choice of operators and the type 

of regulator to construct local Hamiltonians up to N2LO:

close, but it is also apparent that the N2LO bands are of
a similar size as at NLO. This is because the width of the
bands at both NLO and N2LO shows effects of the
neglected order-Q4 contact interactions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the k2

terms, there are no conceptual differences between the two
ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and N2LO
chiral EFT interactions in systematic QMC calculations for
the first time. Since nuclear forces contain quadratic spin,
isospin, and tensor operators (of the form !!

i A
!"
ij !"

j ), the

many-body wave function cannot be expressed as a prod-
uct of single-particle spin-isospin states. All possible spin-
isospin nucleon-pair states need to be explicitly accounted
for, leading to an exponential increase in the number of
possible states. As a result, Green’s function Monte Carlo
(GFMC) calculations are presently limited to 12 nucleons
and 16 neutrons [30]. In this Letter, we would like to
simulate Oð100Þ neutrons to access the thermodynamic
limit. We therefore turn to the auxiliary-field diffusion
Monte Carlo (AFDMC) method [45], which is capable of
efficiently handling spin-dependent Hamiltonians.

Schematically, AFDMC rewrites the Green’s function
by applying a Hubbard-Stratonovich transformation using
auxiliary fields to change the quadratic spin-isospin opera-
tor dependences to linear. As a result, when applied to a
wave function that is a product of single-particle spin-
isospin states, the new propagator independently rotates
the spin of every single nucleon. Using this approach,
central and tensor interactions can be fully included in an
AFDMC stochastic simulation. For the case of neutrons,
it has also been possible to include fully in AFDMC
spin-orbit interactions and three-body forces [46,47].
We first studied finite-size effects and the dependence

on the Jastrow correlations in the trial Jastrow-Slater wave
function (in continuum QMC calculations there are no
discretization effects). The dependence on particle number
was found to be nearly identical to that of the noninteract-
ing Fermi system, consistent with results using phenome-
nological NN potentials [47]. Therefore, we performed
calculations for an optimal number of 66 particles, while
also including contributions from the 26 cells neighboring
the primary simulation box. We also compared the neutron
matter energy at a density 0:1 fm#3 starting from no to
full Jastrow correlations based on the same R0 local chiral
NN interactions versus Jastrow correlations of the hard
Argonne v0

8 potential, as a first step in probing the general
dependence on the Jastrow term. For the softer R0 ¼
1:2 fm (R0 ¼ 0:8 fm) interactions the changes of the
energy per particle are at most 0.1 MeV (0.6 MeV), which
corresponds to 1% (5%) changes. This appears to be
related to the way the propagator is sampled with tensor
and spin-orbit interactions and will be studied in detail
in a forthcoming paper. The exact results should be
independent of the trial wave function, but we consider
Jastrow correlations based on the same R0 interactions
more consistent and use these.
In Fig. 2 we present first AFDMC calculations for the

neutron matter energy with chiral EFT NN interactions at
LO, NLO, and N2LO. Our results represent nonperturbative
energies for neutron matter based on chiral EFT beyond low
densities. For neutrons, the AFDMC method has been care-
fully benchmarked with nuclear GFMC, which can handle
beyond-central correlations as well as release the nodal or
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FIG. 1 (color online). Neutron-proton phase shifts as a function of laboratory energy Elab ¼ 2p2=m in the 1S0,
3P0,

3P1, and
3P2

partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and N2LO bands are
obtained by varying R0 between 0.8–1.2 fm (with a spectral-function cutoff ~! ¼ 800 MeV).

TABLE I. Short-range couplings for R0 ¼ 1:2 fm at LO,
NLO, and N2LO (with a spectral-function cutoff ~! ¼
800 MeV) [31]. The couplings C1–7 are given in fm4 while
the rest are in fm2.

LO NLO N2LO

CS #1:83406 #0:64687 1.09225
CT 0.15766 0.58128 0.24388
C1 0.18389 #0:13784
C2 0.15591 0.07001
C3 #0:13768 #0:13017
C4 0.02811 0.02089
C5 #1:99301 #1:82601
C6 0.26774 0.18700
C7 #0:25784 #0:24740
Cnn 0.05009
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Gezerlis, Tews, Epelbaum, Gandolfi, KH, Nogga, Schwenk, PRL 111, 032501 (2013)



First Quantum Monte Carlo 
based on chiral EFT interactions
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perfect agreement for soft 
interactions, first direct validation 
of perturbative calculations

Gezerlis, Tews, Epelbaum, Gandolfi, KH, Nogga, Schwenk
PRL 111, 032501 (2013)

Greens Function Monte Carlo calculations for light nuclei 
based on chiral interactions currently in progress



Decoupling in 3NF matrix elements

450/500 MeV

�2 = p2 +
3
4
q2 tan � =

2 p�
3 q

hyperradius: hyperangle:

�/�̃

550/600 MeV

 same decoupling patterns like in NN interactions

� =
⇥

12

KH, PRC(R) 85, 021002 (2012)

T = J =
1

2

see also KH, Furnstahl, PRC(R) 87, 031302 (2013)
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�chiral
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Q� m�

Resolution dependence of nuclear forces

quarks+gluons/partons: 

typical momenta in nuclei: Q � m�

QCD
Effective theory for NN, 3N, many-N interactions:

chiral EFT: nucleons interacting via pion exchanges and 
short-range contact interactions

pionless EFT: unitary regime, 
non-universal corrections

large scattering length physics:



Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

• constructed to fit scattering data (long-wavelength information!)

• “hard” NN interactions contain repulsive core at small relative distance

• strong coupling between low and high-momentum components, hard to solve!

Problem: Traditional “hard” NN interactions

Claim: 
Problems due to high resolution from interaction.

�k�|V |k⇥

V3N

k �k

k� �k�

V

Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics



Wavelength and resolution
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Wavelength and resolution

Question:  Which resolution should we choose?

 size of resolvable structures depends on the wavelength



Wavelength and resolution

Question:  Which resolution should we choose?

 size of resolvable structures depends on the wavelength

Depends on the system and phenomena we are interested in! 



• long-wavelength information is preserved

• much less information necessary 

Strategy: Use a lower-resolution version

low-pass filter



• long-wavelength information is preserved

• much less information necessary 

... however, it’s not that easy in nuclear physics.

Strategy: Use a lower-resolution version

low-pass filter
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• truncated interaction fails completely to reproduce original phase shifts

• problem: low- and high momentum states are coupled by interaction!



SRG evolution in momentum space
• evolve the antisymmetrized 3N interaction 

• embed NN interaction in 3N basis:

V 123 =ihpq↵| (1 + P123 + P132)V
(i)
123(1 + P123 + P132) |p0q0↵0ii

V13 = P123V12P132, V23 = P132V12P123

with 3hpq↵|V12|p0q0↵0i3 = hp↵̃|VNN|p0↵̃0i �(q � q0)/q2

• use P123V 123 = P132V 123 = V 123

) dV 123/ds = C1(s, T, VNN, P )

+ C2(s, T, VNN, V 123, P )

+ C3(s, T, V 123)

special thanks to 
J. Golak, R. Skibinski, K. Topolnicki


