Challenges of v-transport toward the full 3D supernova simulations: solving Boltzmann equations and v-processes

Numazu near Mt. Fuji

Numazu College of Technology

Japan

K. 'Sumi'yoshi

6D Boltzmann solver is working for: v-transfer in 3D supernova cores 2D core-collapse simulations on K-computer

MICRA2015@Stockholm, 2015/08/21

Multi-physics in core-collapse supernovae

Microphysics

- Equation of state
- Neutrino reactions
- Nuclear data

Relativistic Astrophysics

- Hydrodynamics
- Neutrino transfer
- General relativity

Computational science

• General relativistic neutrino-radiation hydrodynamics *Huge supercomputing power is necessary*

Focus on neutrino transfer

- Importance of v-transfer: lessons from 1D spherical
- 6D Boltzmann solver: characteristic in 3D supernova core
 - Evaluate approximate methods & provide data for new schemes
- 2D core-collapse simulations: issues toward the full 3D

Neutrino heating and hydro instabilities

- Convection, SASI, rotation, magnetic etc - Observations \rightarrow neutrino-transfer in multi-dimensions

Wang (2002)

Lentz et al. (2015)

Need precise evaluation

v-heating occurs in the intermediate region between diffusion - Need neutrino-transfer & free-streaming outside **^** for energy, angle distribution free-R streaming $f(E_{y},\theta_{y})$ ex. Diffusion approx. is not enough - Even ~10 % change of v-heating shockwave may affect the outcome: explosion heating region Competing with other effects θ_{v} v-heating rate Janka A&A (1996) $Q_{v}^{i} \approx 110 \frac{MeV}{s \cdot N} \left(\frac{L_{v} E_{v}^{2}}{R_{\tau}^{2} < \mu >} X_{i} \right)$ v-sphere

diffusion

center

6

average energy, flux: E_v , L_v flux factor: $<\mu>=<\cos\theta_v>=0~~1$

Achievement of v-transfer in 1D (spherical)

- Shift from approximate to exact methods
 - Light bulb, Leakage \rightarrow Diffusion approximations
 - Exact 1D transfer (Moment formalism, Boltzmann solver)
- First principle calculation in spherical symmetry 2000~
 - General relativistic v-radiation hydrodynamics
- No explosion in spherical symmetry

Validation of v-transfer in 1D (spherical)

- Comparison of methods: check advantage & defects
 - Moment formalism vs Boltzmann solver
 - Boltzmann solver vs Diffusion, Monte Carlo

Ongoing progress of v-transfer in 2D/3D

• Approximate methods

See also Messer, Pan, O'Connor, Richers currently state-of-the-art

- Diffusion/IDSA, Moment method with closure relation
- Ray-by-ray (along radial transport, moment/diffusion)
- Full evaluations of v-transfer challenging
 - Monte Carlo, Moment method Cardall, Shibata, Richers, Kuroda, Just
 - Boltzmann in 5D, Post bounce 2D dynamics Ott et al. (2008)
 - Boltzmann in 6D, Fixed 3D profiles Sumiyoshi (2012)
- Examine approximations, core-collapse
 - Check and improve approximate methods
 - Diffusion in 2D (Ott, Brandt) Ray-by-ray in 3D (Sumiyoshi 2015)
 - Sp. Rel. Boltzmann in 5D + Hydrodynamics 2D
 - with Lorentz boosts in collision term

Nagakura (2014)

Solving neutrino transfer in 3D space

How to handle 6D Boltzmann eq.

Solve neutrino transfer in 3D space

• Work in 6D: 3D space + 3D v-momentum

 $f_{v}(r,\theta,\phi; \varepsilon_{v},\theta_{v},\phi_{v}; t)$

– Neutrino energy (ϵ_v) , angle (θ_v, ϕ_v)

• Time evolution of 6D-distribution

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \vec{n}\cdot\vec{\nabla}f_{v} = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

- Left: Neutrino number change
- Right: Change by neutrino reactions
- Energy, angle-dependent reactions
 - Compositions in dense matter (EOS table)

 θ_{v}

Levels of v-transfer: angle moments

• Boltzmann eq. $\frac{1}{c} \frac{\partial f_v}{\partial t} + \vec{n} \cdot \vec{\nabla} f_v = \frac{1}{c} \left(\frac{\delta f_v}{\delta t} \right)_{collision}$ \rightarrow Direct solve in 6D

Integration by angle to reduce computational cost

- Oth moment $\frac{1}{c} \frac{\partial E_v}{\partial t} + \frac{1}{c} \nabla \cdot \vec{F}_v = Q_v^0$ Flux limiter \rightarrow Diffusion approximation $\vec{F}_v = -D\nabla E_v$ D
- 1st moment $\frac{1}{c} \frac{\partial \vec{F}_{v}}{\partial t} + c \nabla \cdot \vec{P}_{v} = \vec{Q}_{v}^{1}$ Eddington \rightarrow Closure relation $P_{v}^{ij} = T^{ij} E_{v}$ T^{ij}

Boltzmann eq. in spherical coordinate

Pomraning, *Mihalas*², *Castor*

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \frac{\mu_{v}}{r^{2}}\frac{\partial}{\partial r}(r^{2}f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}}\cos\phi_{v}}{r\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}}\sin\phi_{v}}{r\sin\theta}\frac{\partial f_{v}}{\partial\phi} + \frac{1}{r}\frac{\partial}{\partial\mu_{v}}[(1-\mu_{v}^{2})f_{v}] + \frac{\sqrt{1-\mu_{v}^{2}}\cos\theta}{r\sin\theta}\frac{\partial}{\partial\phi_{v}}(\sin\phi_{v}f_{v}) = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

– Discrete in conservative form (S_n method)

Sumiyoshi & Yamada, ApJS (2012)

- Implicit method in time
 - Stability, equilibrium, time step
 - Stiff eq.: different time scales

- Collision term for v-reactions Multi-energy, angle

$$\frac{1}{c} \left(\frac{\delta f_{v}}{\delta t} \right)_{collision} = j_{emission} (1 - f_{v}) - \frac{1}{\lambda_{absoption}} f_{v} + C_{inelastic} \left[\int f_{v} (E'_{v}, \mu'_{v}) dE'_{v} \right] + \dots$$
$$\mu_{v} = \cos \theta_{v}$$

• absorption, emission, scattering and pair process...

Microphysics in supernova core

- Neutrino reactions via weak interactions
 - Emission & absorption:
 e⁻ + p ⇔ v_e + n
 e⁻ + A ⇔ v_e + A'
 e⁺ + n ⇔ v_e + p
 Scattering:
 v_i + N ⇔ v_i + N
 v_i + A ⇔ v_i + A

$$v_i + e \iff v_i + e$$

• Pair-process: $e^{-} + e^{+} \Leftrightarrow \nu_{i} + \overline{\nu}_{i}$ $N + N \Leftrightarrow N + N + \nu_{i} + \overline{\nu}_{i}$ Bruenn (1985), Burrows (2006) Multi-species: $\nu_{e}, \overline{\nu}_{e}, \nu_{\mu/\tau}, \overline{\nu}_{\mu/\tau}$ Energy-dependent $\sigma_n(E_v) \sim \sigma_0 E_v^2$ at E_v~10-100MeV

At wide ρ , T, Y_i $\rho \sim 10^5 - 10^{15} \text{ g/cm}^3$ $T \sim 0 - 10^{11} \text{ K}$ $Y_i \sim 0 - 0.5$

- Equation of state of dense matter: nuclear physics
 - Composition: proton, neutron, nuclei, e⁻, e⁺
 - Thermodynamics: chemical potentials

pressure, entropy,...

Lattimer-Swesty (1993), Shen (1998, 2011)

000000000000000000000000000000000000000	
Temperature= 1.000000E-01	
5.100000E+00 7.581421E-11 -2.000000E+00 1.000000E-02 -1.524779E+00	
5.200000E+00 9.544443E-11 -2.000000E+00 1.000000E-02 -1.502472E+00 +	
5.300000E+00 1.201574E-10 -2.000000E+00 1.000000E-02 -1.480166E+00 +	
5.400000E+00 1.512692E-10 -2.000000E+00 1.000000E-02 -1.457861E+00	
5.500000E+00 1.904367E-10 -2.000000E+00 1.000000E-02 -1.435557E+00	
5.600000E+00 2.397456E-10 -2.000000E+00 1.000000E-02 -1.413255E+00	
5.700000E+00 3.018218E-10 -2.000000E+00 1.000000E-02 -1.390953E+00	
5.800000E+00 3.799711E-10 -2.000000E+00 1.000000E-02 -1.368653E+00	
5.900000E+00 4.783553E-10 -2.000000E+00 1.000000E-02 -1.346354E+00	
6.000000E+00 6.022137E-10 -2.000000E+00 1.000000E-02 -1.324056E+00	
6.100000E+00_7.581421E-10 -2.000000E+00_1.000000E-02 -1.301759E+00	
6.200000E+00 9.544443E-10 -2.000000E+00 1.000000E-02 -1.279464E+00	
6.300000E+00 1.201574E-09 -2.000000E+00 1.000000E-02 -1.257169E+00	
6 400000E+00 1 512692E-09 -2 000000E+00 1 000000E-02 -1 234876E+00	
6 500000E+00 1 904367E-09 -2 000000E+00 1 000000E-02 -1 212584E+00	
6.600000E+00_2.397456E-092.000000E+00_1.000000E-021.190294E+00	
http://user.numazu-ct.ac.in/~sumi/eos	
http:// dooringing/ bann/ cos	

EOS data tables:

Validation of code to solve 6D Boltzmann eq.

Sumiyoshi & Yamada ApJS (2012)

- Analytic approach
 - Gaussian packet, free-streaming
 - Formal solution by integral
 - Approach to equilibrium solution
- Comparison with 1D-code
 - Fixed background
 - Density, flux, moments
 - Reaction rates, mean free path

Utilize 1D code of GR v-radiation hydrodynamics Sumiyoshi et al. ApJ (2005)

6D Boltzmann solver works indeed

Applications to 3D supernova cores

Examine Ray-by-ray approximation Closure relation for moment methods

Systematic study using 3D SN core

Sumiyoshi et al. ApJS (2015)

6D Boltzmann with fixed background

Sumiyoshi et al. ApJS (2015)

Fix hydro. variables, solve time evolution by 6D Boltzmann eq.

- Evaluate stationary state of the neutrino distributions in 6D
- Study neutrino transfer in 3D, heating rates, angle moments

Comparison with approximate method

• Full-Boltzmann 6D:

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \frac{\mu_{v}}{r^{2}}\frac{\partial}{\partial r}(r^{2}f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}}\cos\phi_{v}}{r\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}}\sin\phi_{v}}{r\sin\theta}\frac{\partial f_{v}}{\partial\phi} + \frac{1}{r}\frac{\partial}{\partial\mu_{v}}[(1-\mu_{v}^{2})f_{v}] + \frac{\sqrt{1-\mu_{v}^{2}}\cos\theta}{r\sin\theta}\frac{\partial}{\partial\phi_{v}}(\sin\phi_{v}f_{v}) = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

• Ray-by-ray approximation: Switch OFF non-radial advection

Comparison with approximation

- Ray-by-ray
- Only radial transfer
- Anisotropy enhanced
- 6D Boltzmann
- Non-radial transfer
- Integrated values from various directions

Consistent with Ott-Brandt in 2D

 $\overline{\nu}_{e}$ density: color View from side: ϕ -slice

Sumiyoshi et al. (2015)

Local fluctuations of neutrino degeneracy: hotspot

Evaluation of neutrino fluxes

• 6D Boltzmann

Integration from many directions

• Ray-by-ray (RbR)

Contribution from 1 radial direction

Further study on the approximations is necessary

Time evolution: deviation lasts for ~10ms 145ms - 155ms

Providing data for approximate methods

- Comparison with closure for moment formalism
- 6D Boltzmann directly gives pressure tensor

$$P^{ij}(\varepsilon_{v}) = \int d\Omega \varepsilon n_{i} n_{j} f(\varepsilon, \Omega) \longrightarrow T^{ij}(\varepsilon_{v}) = P^{ij}(\varepsilon_{v}) / E(\varepsilon_{v})$$

• Closure relation by function of flux vectors

$$\vec{\mathbf{T}} = \vec{\mathbf{I}}(1 - \chi)/2 + \mathbf{nn}(3\chi - 1)/2 \implies \vec{\mathbf{P}} = E\vec{\mathbf{T}}$$
$$\mathbf{f} = f\mathbf{n}$$

ex.
$$\chi = (1/3) + 2f^2/(2 + \sqrt{4 - 3f^2}) = (3 + 4f^2)/(5 + 2\sqrt{4 - 3f^2}).$$

Levermore JQSRT (1984)

6D Boltzmann to examine moments

• Sekiguchi GR simulation: 2D rotating Collapsar

Eddington tensor by 6D Boltzmann

Eddington tensor by Closure relation

Deviation of Eddington Tensor $\Delta T^{ij} = T_{Cl}^{ij} - T_{6D}^{ij}$

34

6D Boltzmann solver & Hydro

Applications to 2D core-collapse dynamics

Nagakura, Iwakami (2015)

Sp. Rel. Boltzmann & hydrodynamics in 2D

Nagakura et al. ApJS (2015)

- Coupling with Hydrodynamics and 2D Gravity Newtonian
 - Semi-implicit updates by multi-step
- Lorentz boosts in collision term
 - Energy shift & angle aberration
- Bruenn + GSI e-capture rates
 - e-scattering, pair processes
- Furusawa EOS
 - NSE multi-composition, TM1

deformed energy-angle grid Lorentz transformation of neutrino distributions

cf. Ott (2008)

Applications of Boltzmann-Hydro Code 6D Boltzmann works in supernova dynamics

 \bullet

2

1D Collapse of 15M_{sun} ullet

mass coordinate (Mso)

- Check with 1D GR code
- Collapse, bounce and stall

- 2D core collapse of $15M_{sun}$ entropy T= 424 ns 250 200 150 15 100 Entropy [k_b/barion] 50 Ø 10 -50 -100 5 -150 -200 -258 -250 -200 -150 -100 -50Ø 50 100 150 200 250 r [km] Convection, SASI
 - Low resolution
 - $\sim 400 \text{ ms}$
 - Simulation & Movie by Iwakami 37

JSME-FED

2D core-collapse by Boltzmann-Hydro Code

• Running at K-computer: Fe core, 11.2M_{sun}, 15M_{sun} stars

WHW02 time = 001.1ms Shock position 250 200 Entropy 14 150 color map 200 12 100 10 150 r (km) 50 z (km) 8 0 100 -50 6 max 50 min -100 ave 11.2M 4 1D -150 0 20 40 60 80 0 100 120 2 -200 t (ms) -200-150-100 -50 50 100 150 200 0 x (km) Now at ~ 140 ms after bounce - N_{space} =384x128, N_{v} =20x10x6 @ K-computer

Stay tuned

Necessary computational resources

- Matrix: memory $N_{space} N_e \times M^2$ operation $N_{space} N_e \times M^3$ Space: N_{space} , Neutrino: $N_v = N_e M$ Parallel (MPI+OpenMP) by space r, θ , ϕ
- Static: 6D Boltzmann + 3D background
 - $-N_{space}$ =256x64x32, N_{v} =14x6x12 @ KEK Hitachi SR
- **Dynamics:** 5D Boltzmann + 2D Hydrodynamics
 - $-N_{space}$ =384x128, N_v=20x10x6 @ K-computer
 - $-5x10^{6}$ steps to see if explodes in 0.5s
- Need Exa-flops machines for full 6D+3D simulations

Dawn of full v-transfer in 3D supernovae

- From approximate to exact v-transfer in 2D/3D
 - pin down the uncertainty from ν -transfer
 - establish the explosion mechanism as in 1D case
 Need to determine effects precisely around threshold
- New tools to solve 6D Boltzmann equation
 - 3D non-radial transport, heating rates
 - Ray-by-ray method, Moment closure
 - 2D supernova dynamics running: explosion?
 - Preparing 3D supernova dynamics (*full at Exa-scale*)
- Comparisons of methods is important
 - 6D Boltzmann to examine approximations

Project in collaboration with

- Numerical simulations
 - H. Nagakura
 - W. Iwakami
 - S. Yamada
- Supernova research
 - T. Takiwaki
 - K. Kotake
 - Y. Sekiguchi

- Supercomputing
 - H. Matsufuru
 - A. Imakura
 - T. Sakurai
- EOS tables & neutrino rates
 - H. Shen, K. Oyamatsu, H. Toki
 - C. Ishizuka, A. Ohnishi
 - S. Furusawa, S. Nasu
 - S. X. Nakamura, T. Sato

Supported by

PI M. Shibata

- HPCI Strategic Program Field 5 Supernovae is one of the target simulations of K-computer and Exa-scale machine
- HPC resources at KEK, YITP, UT, RCNP

Grant-in-Aid for Scientific Research (24244036, 15K05093) 41