The Isotropic Diffusion Source Approximation for Multi-D Supernova Simulations

"also with FLASH"

Kuo-Chuan Pan Universität Basel, Switzerland

The Basel Supernova Group:

Friedrich-Karl Thielemann Marius Eichler Matthias Hempel Oliver Heinimann Andreas Lohs Matthias Liebendörfer Takami Kuroda Rubén Cabezón Kevin Ebinger

Basic Physics

- Direct hydrodynamics mechanism always fail!
- Neutrino-driven convection is the key

Isotropic Diffusion Source Approximation (IDSA)

Multi-D Simulations with IDSA

- Multi-dimensional simulations with the IDSA have been studied by the Nippon groups
- ZEUS+IDSA in spherical coordinates with Ray-by-Ray approach

Nakamura+ 14

MICRA 2015

Multi-D IDSA with FLASH

FLASH+IDSA

- > 2D cylindrical and 3D Cartesian coordinates with AMR: better PNS but noisy
- Not "Ray-by-Ray" approach. We solve the diffusion source and trapped particle component in multi-dimensions, but keep the streaming component in spherical symmetry (Similar to the Elephant code)
- > 20 energy bins from 3 MeV to 300 MeV
- Only for electron type neutrinos (Heavy neutrinos -> Leakage scheme)

MICRA 2015

The FLASH code (v4.2.2)

Code Status:

- Geometry: 1D spherical, 2D cylindrical, and 3D Cartesian (Similar to Couch+13)
- Hydrodynamics: 3rd PPM with HLLC Riemann solver with AMR
- Resolution: effective angular resolution (2D:~0.3-0.6⁰, 3D:~1-2⁰)
- Simulation box: r= 0 to r= 10,000 km
- Gravity: The new improved multi-pole solver (Couch+13; Newtonian or eff. GR)
- EoS: Supernova EoS from <u>http://stellarcollapse.org</u>
- Neutrino transport: Isotropic Diffusion Source Approximation (IDSA)
 - Collapse: **IDSA** or parametrized deleptonization (**PD**; Liebendorfer+05)
 - Postbounce: IDSA (Liebendorfer+09)

1D Code Comparison: FLASH v.s. AGILE

Neutrino Spectra

MICRA 2015

1D Code Comparison: Eff. GR

s15s7b2 (W1995) + LS180

MICRA 2015

The Bruenn rates (1985) in IDSA

s15 (W2007) + LS220

MICRA 2015

Kuo-Chuan Pan

2D Code Comparison

The 2007 (WHW) Progenitors

MICRA 2015

2D Code Comparison

The 2007 (WHW) Progenitors

MICRA 2015

Hanke 14

0.4 0.5 Ifter hounce [s]

600 800

Time after Bounce [ms]

Time after Bounce [ms]

Dolence+15

Bruenn +13

400

Suwa +14

800

600

400

s50 s55 s80

2D Code Comparison

MICRA 2015

2D: W2002 Progenitors

DD2 vs. LS220

FLASH+IDSA+DD2

The HS(DD2) EoS

The new SN EoS HS (DD2) shows a better agreement with nuclear experiments (Kruger+13; Fischer+14; Hempel+15)

MICRA 2015

2D Results: SASI

SASI Amplitude

MICRA 2015

Kuo-Chuan Pan

2D Results: Convection-Driven

Brunt-Vaisala Frequenciy

Anisotropic Velocity

MICRA 2015

2D vs. 3D

MICRA 2015

3D FLASH-IDSA results

Pan+ in prep.

- 3D IDSA+PD
- ▶ 15M_{sun} (WHW+02)
- HS (DD2) EoS
- Newtonian
- Resolution: 1.8⁰
- Only 0.5M cpu-hours

3D simulations with the 15.0 progenitor

MICRA 2015

2D vs. 3D (conti.)

MICRA 2015

Neutrino Heating in 3D

MICRA 2015

Kuo-Chuan Pan

- Our IDSA implementation seems robust (or too optimistic; all 2D and 3D models exploded) with diagnostic explosion energies ~0.1-0.5 B (at ~400ms)
- Neutrino interactions (e.g. NES) during collapse are important in Multi-D
- Neutrino-driven convection with little SASI (W2002 Progenitors)
- DD2 is slightly easier to explode than LS220
- 3D seems harder to explode than 2D
- IDSA is promising to achieve high-resolution 3D simulations (good for progenitor studies, long-term evolutions and nuclear synthesis)

EoS Dependence

9 EoS from StellarCollapse with the s15.0 (W2002) progenitor

MICRA 2015

3D Code comparison

MICRA 2015

2D vs. 3D

Time = Time = 400 ms

MICRA 2015