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0 Background

 Numerical-relativity data are required
for the coming observations.

* Numerical-relativity data will be tested
for the next 5-10yrs observation.

* Happy epoch will come.

e However, we need more carefulness
and more efforts.



Major roles of numerical relativity
for neutron-star binary mergers

1. Deriving accurate gravitational waveforms:
clarifying dependence on EOS, mass, spin

2. Claritying the remnant & its evolution:
Could it be central engine of short GRBs ?

3. Quantifying ejecta: mass, velocity,
temperature, neutron-richness (= opacity)



1 Gravitational waveforms: Inspiral

* Goal: Making an accurate template that
depends on mass, spin, & EOS

* Procedure: Accurate numerical simulation
—> analytical or semi-analytical modeling
(e.g., by effective-one-body; Bernuzzi’s talk)

* Numerical relativists have to perform
accurate simulations for a variety of
mass, spin & EOS



Current status in (my) understanding

Accurate simulations are getting possible:

* Eccentricity reduction for initial condition 1s
crucial =2 getting standard: SXS, Kyoto, Jena, ..

* Long-term simulations are necessary:

expensive but not problem for ~15-20 orbits
= More ?? (although 1 don’t think so)

* Taking convergence 1s a key (note that for
hydro simulations, convergence is 3-4" order):
Constraint propagation prescription 1s found to

be robust for improving the convergence
(e.g., Bernuzzi, Hildtich et al. )



Hydro results are at best, 3"9-4th-order
convergence
We can never obtain exact numerical waveform
in hydrodynamics simulation !!
But, extrapolation can give an “almost” solution
fortunately t— nt, d=[27fd (17 t)
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Hotokezaka et al. 2015 ~3.5+0.5"-order convergence



Extrapolated waveform vs EOB for R=13.6 km
EOB latest (Bernuzzi et al. “15)
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Comparison with effective-one-body approach
EOB latest (Bernuzzi et al. ‘15)
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Comparison with EOB: frequency
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Good match for R=11.1 km (APR4)
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1 Gravitational waveforms: Inspiral

Issues

EOB is promising (Bernuzzi’s talk) but modeling by
EOB + static tidal deformability 1s not enough:
- +resonance ? (Hinderer et al.) + more ?

Only a few accurate works for BH-NS (Foucart et al.)
- need more systematic simulations for this

How we model NS-NS inspiral + early merger

waveform ?
This 1s crucial for improving of SNR for f~ 1kHz
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* Inspiral: cold EOS, no shock heating, no ME
* Post merger: Shock - Hot, MHD, neutrinos ...

Gravitational waveforms: post Merger
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Clear correlation between peak and radius
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Issues

* After merger = after shock heating

* Effect of shock heating changes waveforms:
Af~0.1kHz ?? - need to clarify systematics

 MHD/viscous effects may be important

* Effect of microphysics ? Neutrino cooling may play
a role for long-term evolution.

* Note: The latest universal relation argument
usually ignores all these uncertainties

> Systematic error should be clarified



2 Merger & remnant

NS-NS: Typical remnant = massive neutron star
for typical mass (e.g., 1.35-1.35 M NS)

BH-NS: BH + torus (if NS is tidally disrupted)
Questions:

* How hyper/supramassive neutron stars evolve ?
* How resulting BH + torus evolve ?

More specifically:

* How is the neutrino effect ?

* How is the magnetohydrodynamics effect ?



Simulations for merger remnant
Current status:

* GR radiation hydro simulations are ongoing:
Leakage or M1 grey (Sekiguchi, Foucart, Palenzela ...)
-> semi-quantitative study (quite interesting results)

* A high-resolution MHD simulation 1s ongoing:
Kiuchi et al. demonstrate high-resolution is crucial

Questions:

e Are more detailed radiation transfer effects needed ?
-> anyway, need try and comparison

* Probably, radiation hydro + angular momentum
transport effects would be keys = GRRMHD ?

 For GRBs, pair-annihilation should be considered
(Just’s talk)




High-resolution GRMHD simulations
Kiuchi et al. 2015 1n prep

 Fixed mesh refinement: dx=70m—=235m—=-2>17.5m
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High-resolution GRMHD for NS-NS
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Magnetic energy: resolution dependence
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Magnetic energy soon after merger
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Merger remnant would be magnetized

Questions:

* Is highly magnetized remnant NS equivalent
to highly viscous NS ?

* If so, how large 1s the effective viscosity ?

* High-resolution GRRMHD 1s the best one,
but too expensive. Alternative approach ?
Sub grid models ? (Giacomazzo et al.)

# Note: anyway, calibration is necessary for new ideas

* How 1s magnetar (NS with force-free strong
magnetic field) produced ?
—> Ultra long-term run is necessary



3 Merger & mass ejection

Detailed quantitative studies are awaited
for an efficient macronova search
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According to Li-Paczynski (ApJ, 1998)

Maximum Luminosity @ R/v=R’pkx/c:

M 1/2 1/2 -1/2 f
L ~4x10" ergs/s Y x S
me 0.01M_ ) (02¢) \10 ecm®/g 3x10°

M 1/2 -1/2 1/2
at ¢~ 5 days Y K2
0.01M 0.2c 10cm™/g

3x10" ergs/s & M=-15.0 mag = m=21.5 mag @ 200Mpc

 These depend strongly on mass, velocity, & opacity
* Opacity ~ 10 cm?/g for 27d--37 peak elements
(Barnes & Kasen, Tanaka & Hotokezaka 2013)



Mass ejection mechanisms

Dynamical ejection by tidal torque (Rosswog, ..)

Dynamical ejection by shock heating with GR
gravity (Hotoke+, Bausweint)

Ejection by viscous wind from torus surrounding a
black hole (Fernandez-Mezger, Just+, ...)

Ejection by neutrino heating (Dessart+, Perego+,...)
Ejection by magnetohydrodynamics (Kiuchi+)

All these effects could play important roles



Ejecta property
Dynamical ejection
* NS-NS: Mass ~0.001-0.02 M_ = depending on EOS,

Sun

v/c ~0.15-0.25, <Y >~0.1-0.4
* BH-NS: Mass ~0-0.1 M ., <Y,
Viscous ejection from torus
 Mass ~0.001-0.01 M_ _ depending on viscous

Sun

parameter, initial velocity profile: uncertainties
* Velocity <~ 0.1c, mildly neutron-rich
Neutrino heating

* Mass ~0.001-0.01 M, depending on source model
(uncertainty)

* Velocity <~ 0.1c
* Mildly neutron rich 1s the result (Perego’s talk)



BH-NS: Mass ratio=4, BH spin a=0.75

t = 0.0000ms @

1015.0 G

Simulation by “K” computer: Kiuchi et al.




Need self-consistent & systematic study

* Very long-term self-consistent simulation for
merger and remnant evolution is necessary

 Both angular momentum transport effect &
neutrino transport are the keys for the
evolution of remnant
- long-term GRRMHD simulation is awaited
(targets for exa-scale computer) or some effective
model simulation ?

* Not only optimistic suggestion but also the
systematic study 1s necessary for observers:
Should clarify the possible systematic error bar



Summary

* Numerical-relativity data will be tested
for the next 5-10 yrs observation !

* Happy epoch will come soon

¥

* We need more careful and systematic
numerical simulations by many groups




Announcement
from Yukawa Institute,
Kyoto University

* Long-term workshop on
“Nuclear Physics, Compact Stars,

Compact-star mergers 2016”
Oct.17 (Mon.) -- Nov.18 (Fr1.), 2016.



Neutron-unrichness (Y,) and opacity ?

Is abundance pattern of r-elements similar to
solar pattern ?

* Lanthanides (2™ peak) are significant for
increasing the opacity (Kasen+, Tanaka+)

* Are the 3"d-peak elements s1gn1ﬁcant to
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increase opacity ? Pagel
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