Jet Precession in SGRBs: a Discriminant Between NS-NS and BH-NS Mergers

NICHOLAS STONE¹ – 8/18/15, MICRA @ NORDITA

WITH AVI LOEB² & EDO BERGER²

¹COLUMBIA UNIVERSITY ²HARVARD UNIVERSITY

Compact Object Mergers

- Increasing observational evidence of compact object merger progenitors for SGRBs
- Open question: BH-NS or NS-NS?
 - Relative rates uncertain

• BH-NS rates very interesting

- ALIGO rate informs binary evolution, stellar dynamics
- SGRB/ALIGO rate ratio informs NS radii, BH spin distributions

(Wikimedia)

Compact Object Mergers: Differences

- Dynamical ejecta (Piran+13)
 NS-NS ~0.01 M_☉
 BH-NS ~0.05 M_☉
- Supramassive NS (Özel+10)
- GW signal (e.g. Rosswog+13)
- Offset distribution (natal kicks)
 - Statistical/hypothetical probe (Belczynski+ 06)
- Our proposal: jet precession

Tilted Disks

- Kerr metric => framedragging
- Differentially precessing mass annuli: dJ/dt α r⁻³
- Warp evolution depends on $(H/R)/\alpha$
 - Thin disks: warp propagation diffusive, shear viscosity aligns inner regions (Bardeen-Petterson effect)
 - Thick disk: warp propagation wavelike

(Gravity Probe B)

Precessing Disks

- Inclined thick disks precess like solid body rotators when torqued
 - Specifically, if $H/r > \alpha$

Seen in various tilted disks:

- Protoplanetary
- BH disk
- BH-NS remnant
- Open question: where does jet point?
 - **J**_{BH}? • **J**_{disk}?

(Larwood+96)

(Fragile & Blaes 08)

(Foucart+11)

Precessing Jets

• Theory:

- Force-free: aligns with **J**_{disk} (Palenzuela+10)
- GRMHD: **J**_{disk}, but ambiguous (McKinney+13)

• Observations:

- Microquasars: LSI+61°303 indicates **J**_{disk} alignment (Massi+12)
- Tidal disruption events: Swift J1644+57 indicates J_{BH} alignment (Stone & Loeb 12), but possible J_{disk} alignment at early times

(McKinney+13)

Past Work – Precessing SGRB Jets

• Older SGRB models (Blackman+ 96)

• CO merger

- \circ Thick steady-state disks, LT torques, jets aligned with \mathbf{J}_{disk} (Reynoso+ 06)
- o Lightcurves (Lei+ 07)

• We calculate for the first time:

- Large Monte Carlo sample of merger events with realistic prescriptions for postmerger spin, misalignment, etc
- $\circ\,$ Distributions of T_{prec}, ψ_d
- Evolution of QPO
- Requirements for disk tilt

Which SGRB Disks are Tilted?

• NS-NS: no

ψ_d<1°, generally <<1°
Compare to θ_{jet}~5°

• BH-NS: often

 $\circ \psi_d \sim 25^\circ$

Which SGRB Disks are Tilted?

• NS-NS: no

- ψ_d<1°, generally <<1°
 Compare to θ_{jet}~5°
- BH-NS: often
 - $\circ \psi_d \sim 25^\circ$
- Important caveat many BH-NS mergers can't produce SGRBs

• Small M_{BH}, large a_{BH}, large R_{NS} help

(Fong+14)

BH-NS Merger Prescriptions

- PN fitting formula used for postmerger mass m_f, spin a_f
 - o Lousto+ 11 surprisingly accurate!
- Tidal disruption criteria
 - Calibrated from numerical relativity (Foucart 12)
 - Effective spin modification for misaligned BH-NS
- Precession timescale, amplitude • T = $-\Sigma r(r/r)$

$$T_{\text{prec}} = 2\pi \sin(\psi_d) (J/\tau), \text{ so for } \Sigma = \Sigma_0 (r/r_0)^{-\zeta},$$

$$T_{prec} \approx 0.3 \sec \left(\frac{r_0}{50r_G}\right)^{5/2-\zeta} \times \left(\frac{r_i}{10r_G}\right)^{1/2+\zeta} \times \left(\frac{M_{BH}}{M_{Sun}}\right) \times \left(\frac{a_{BH}}{0.9}\right)^{-1}$$

Timescale Evolution

- Analytic solution for spreading disk (Metzger+ 08)
- Self-similar expansion: $T_{prec} \alpha t^{4/3}$
- Results sensitive to α
 - Need $\alpha \le 0.1$ for $N_{cycles} > 1$
 - Need $\alpha \le 0.01$ for $N_{\text{cycles}} > 10$

(Stone, Loeb & Berger 13)

Evolution and Observability

• Observability:

- $T_{\rm prec}$ >10 msec >> Δt
- Limited by photon counting statistics
- Two theoretical uncertainties
- 1. Does jet align with \mathbf{J}_{BH} or \mathbf{J}_{disk} ?
 - If J_{disk}, then ψ_d~25° is the precession angle
 If J_{BH}, then (J_{disk}/J_{tot})ψ_d<5° is the precession angle
- 2. How does disk spread viscously outward?
 - I.e. how does T_{prec} grow in time?

Observational Searches

- BATSE archival search: 2203 GRBs, no periodicity detected (Kruger+02)
- Followup search by Dichiara+13
 - Examined 44 SGRBs with SNR>20, no periodicity found in power spectra
 - \circ 14/44 have sufficient SNR to search for $T_{prec}\,\alpha\,t^{4/3}$: no QPOs found
 - Constraint on BH-NS fraction?

Conclusions – SGRB Jet Precession

- Post-merger BH-NS disks will have large tilts $\psi_d \sim 25^\circ$, initially short $T_{prec} \sim 0.01$ -0.2s
 - Post-merger NS-NS disks have $\psi_d < 1^\circ$
- Results generally independent of assumptions on progenitor population
- Larger uncertainties physical:
 - Jet alignment direction?
 - Viscous spreading of disk? I.e. α <0.1 needed for N_{cycles} >> 1

• Implications:

- QPO in prompt emission
- Larger solid angle for jet/outflows in BH-NS
- Precession nondetections (Dichiara+ 13) may indicate low BH-NS fraction in SGRBs

