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Physics of neutron star mergers

NSMs link together and explain several phenomena:
shrinking orbits of galactic binary neutron stars;
short GRBs;
robust pattern of r-process in MP stars;
abundance of live 244Pu in deep-sea reservoirs on Earth.

Predictions:
gravitational waves;
electromagnetic signals (macronovae / kilonovae);
neutrino signals.
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Astrophysical robustness of r-process
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Robustness of r-process in metal-poor stars

[Sneden et al. (2008)]
(→ see also review by Carla Frölich)O. Korobkin Macronovae from Neutron Star Mergers August 19, 2015 6 / 31



Different components of the merger remnant
[From Rosswog (2015):]
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Robustness of the "strong" r-process in simulations

Robust pattern of main r-process final abundances, independent from the
trajectories or simulations [Korobkin, Arcones, Rosswog & Winteler (2012)]:
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(confirmed in Bauswein et al. 2013 for a wide range of EoS)
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Multiple fission cycles in the r-process

[made with the script by C. Winteler]
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Improved nuclear physics

There is much more substantial variation due to the nuclear input, (e.g.,
fission products distribution):
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Improved nuclear physics

→ see talk by Shota Shibagaki;
From M. Eichler et al. (2014): impact of fission model and beta decay
rates on the r-process abundances:
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Nucleosynthesis in neutrino-driven winds

→ see talk by Albino Perego;
From A. Perego et al. (2014): detailed 3D hydrodynamical study of
𝜈-driven winds with Neutonian gravity and spectral leakage scheme
which is adjusted to account for 𝜈-heating.
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Combined picture of r-process

[From D. Martin i in. (2015):]
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Combined picture of r-process

[From D. Martin i in. (2015):]

0 10 20 30 40 50 60 70 80
Z

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100
 [1

0
4

]
dynamic
90 ms
140 ms
190 ms
CS22892­052

O. Korobkin Macronovae from Neutron Star Mergers August 19, 2015 13 / 31



Alternative explanation of robustness

→ see talk by Yuichiro Sekiguchi;
[From Wanajo et al. (2014):]
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Where does the dynamical ejecta come from?

Two components can be identified:
tidal component;
interaction region component.
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Macronovae
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Early studies of the r-process-powered transients

Li & Paczyński (1998)

Kulkarni (2005)

Metzger, Martínez-Pinedo et al. (2010)

Metzger, Arcones et al. (2010)

Roberts, Kasen & Lee (2011)

Goriely, Bauswein & Janka (2011)

Wanajo & Janka (2012)

Kasen, Badnell & Barnes (2013)

Barnes & Kasen (2013)

Tanaka & Hotokezaka (2013)

Tanvir et al., Nature (2013)
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Candidate #1: GRB130603B (Tanvir+ 13, de Ugarte Postigo+ 13)
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Candidate #2: GRB060614 (Yang+ 15)
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Radioactive heating power
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Lower mass limit for GRB130603B

Assuming that the infrared source was produced by the
r-process macronova, we can estimate an absolute lower limit on
the mass of the radioactive material:

measured magnitude: M(J)AB = −15.35 in the J-band at
t = 6.6 days;
spectral flux: F𝜈 = 5.0 × 10−14 erg

s·cm2·Hz ;
luminosity: L = 𝜋F𝜈 Δ𝜈J · 4𝜋D2 = 3.2 × 1040 erg · s−1,
heating rate: h(6.6 d) = 8.4 × 108 erg · (g · s)−1;

[Piran, Korobkin & Rosswog (2014)]
(→ see also review by Tsvi Piran)
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Simple analytic estimates

Peak times:

t̃p ≈
√︂

𝜅mej

4𝜋cv̄
= 4.9 days

(︂
𝜅10mej,−2

v̄−1

)︂1/2

,

L̃p ≈ 𝜖̇0mej

(︂
𝜅mej

4𝜋cv̄t2
0

)︂−𝛼/2

= 2.5 × 1040 erg
s

(︂
v̄−1

𝜅10

)︂𝛼/2

m1−𝛼/2
ej,−2 ,

T̃eff ≈
(︂
𝜖̇0c
𝜎SB

)︂1/4 (︂ mej

4𝜋ct0

)︂−𝛼/8

𝜅−(𝛼+2)/8v̄(𝛼−2)/8

= 2200 K 𝜅
−(𝛼+2)/8
10 v̄(𝛼−2)/8

−1 m−𝛼/8
ej,−2 .

where 𝜅10 = (𝜅/10 cm2g−1), mej,−2 = (mej/0.01ℳ⊙), v̄−1 = (v̄/0.1 c).
Very high opacities! (Kasen (2013), Tanaka&Hotokezaka (2013)).
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Radiative structure of the remnant

Luminosity is produced due to radioactive heating in the layer between the
photosphere 𝜏ph = 2

3 and the diffusion surface 𝜏diff = ct
𝜁 : L =

∑︀𝜏b<𝜏diff
𝜏b>𝜏ph

𝜖̇(t)mb
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Synthetic macronova lightcurves
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[Barnes & Kasen (2013)] [Grossman et al. (2013)]

transient peaks in near infrared;
very weak signal;
extremely hard to detect in modern surveys.
how about an additional blue component?
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Lanthanides in the neutrino-driven wind

→ see talk by Jonas Lippuner;
From D. Martin et al. (2015): nucleosynthesis in neutrino-driven winds
after neutron star mergers
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See also: [Lippuner et al. (2015)]
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Heating rates in the neutrino-driven wind

→ see talk by Jonas Lippuner;
From D. Martin et al. (2015):
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See also: [Lippuner et al. (2015)]
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Additional blue transient
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Left: From D. Martin et al. (2015): combined blue (U+V bands), red (V+R) and
infrared (J+H+K) contributions.
Right: from [Kasen, Fernandez & Metzger (2014)].
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Detecting gravitational wave bursts

NSMs are the primary targets for the advanced
GW detectors (LIGO, VIRGO), coming into
operation in the next few years;
estimated rates: several events per year;
due to poor directional sensitivity of GW
detectors, we will remain blind to the location of
the mergers, unless they also produce sGRB;
which only happens for a small fraction of all
events.
Detection of isotropic component of NSM would
be desirable! [Nissanke +13]

→ see review by Stephen Fairhurst.
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Conclusions
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Conclusions

Neutron star mergers are plausible candidates for the main producers of
the r-process.
The astrophysical robustness of main r-process in neutron star mergers
naturally explains the robust pattern of abundances in the old metal-poor
stars.
Weak r-process can be explained by nucleosynthesis in the
neutrino-driven wind ejecta.
Radioactive heating produced in merger ejecta leads to an infrared
transient, (macronova / kilonova), peaking around ∼ 6 days.
Additional neutrino-driven wind outflow could produce an early blue
signal, that may be easier to detect.
Detected infrared transients in the afterglow of the GRB 130603B and
GRB 060614 are consistent with the model, but give high mass
estimates.
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Open questions

What is the correct morphology of the dynamical ejecta?
How much matter is ejected, depending on the merging system?
What are the opacities of the hot freshly produced r-process plasma?
Can we detect macronovae from radioactively decaying freshly
synthesized r-process elements?
Can we detect blue transients from the viscously driven / 𝜈-driven winds?
What is the level of "lanthanide / actinide pollution"?
Does neutrino irradiation of the dynamical ejecta significantly affect its
electron fraction and subsequent nucleosynthesis (as in [Wanajo et al.
2014])?

Is fast neutron burst from shock interface a numerical artifact, or is it a detectable
phenomena (as in [Metzger et al. 2014])?

etc.
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