

STATUS OF LIGO AND VIRGO SEARCHES FOR NEUTRON STAR BINARIES & SUPERNOVAE

STEPHEN FAIRHURST FOR THE LIGO SCIENTIFIC AND VIRGO COLLABORATIONS

OUTLINE

Initial detector results
Status of advanced detectors
Searches and parameter extraction
Multi-messenger searches

GRAVITATIONAL WAVE NETWORK

LIGO Hanford, USA

LIGO Livingston, USA

GEO 600, Germany

3

Virgo, Italy

KAGRA, Japan

LIGO India

INITIAL DETECTOR SENSITIVITIES

BINARY MERGER RESULTS

From Abadie et al, PRD (2012)

ADVANCED DETECTOR PROSPECTS

From Aasi et al, 2013

RATES & LOCALIZATION

	Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20\mathrm{deg}^2$
2015	3 months	40 - 60	—	40 - 80	_	0.0004 - 3	—	_
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017 - 18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 70	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022 + (India)	(per year)	105	80	200	130	0.4 - 400	17	48

From Aasi et al, 2013

ADVANCED LIGO DETECTOR

8

From Aasi et al, CQG (2015)

ADVANCED LIGO SENSITIVITY

https://dcc.ligo.org/LIGO-G1401390

FIRST OBSERVING RUN

Scheduled to start mid-September, with two LIGO detectors
Currently undertaking final engineering and calibration runs

ADVANCED VIRGO STATUS

Advanced Virgo is being installed
Main goal is to join observing run in 2016

SEARCHING FOR SHORT DURATION GRAVITATIONAL WAVE BUR DEUTSCHE PHY

- Minimal assumptions about gravitational waveform
- Search for coherent signal in multiple detectors

GRAVITATIONAL WAVE EXTRACTION

The main features of the waveform can be extracted from the data.

SEARCHING FOR BINARY MERGERS

WAVEFORM ISSUES

- Template waveforms last up to 10 minutes (from 15 Hz) and include thousands of gravitational wave cycles
- Require detailed waveform models from post-Newtonian theory and numerical simulations
- Waveforms depend sensitively on masses and spins of NS/BH: must search 10⁵ waveform templates for first run, 10⁶ at full sensitivity
- Waveforms depend upon NS equation of state: not included in current detection templates

REAL DATA

- Real data contains non-Gaussian transients
- These can mask signals in the data and increase the noise background for transient searches

RAPID SEARCH AND LOCALIZATION

17 From Singer et al, ApJ (2014)

MEASURING PHYSICAL PARAMETERS

- Detailed parameter estimation analysis returns distributions for all signal parameters.
- First few detections
 likely to be weak:
 unlikely to extract
 parameters accurately.

From Hannam et al, ApJL (2013)

NEUTRON STAR EQUATION OF STATE

- Equation of state affects the waveform evolution
- Effect only likely to be observable for nearby events.
- Can extract equation of state from a population of tens of events.

Agathos et al, PRD (2015).

POST MERGER OSCILLATIONS

- Use burst methods to search for post-merger oscillations following observed inspiral
- Only likely to be observable for nearby events

From Bauswein et al 2012

TRIGGERED SEARCHES

- Additional "triggered" searches around astrophysical interesting events: GRBs, nearby supernova
- Use time and sky location to reduce search parameter space
- Can increase sensitivity by a factor of two

GRB PROSPECTS

If short bursts are from NS-NS binaries:

Epoch	Run Duration	BNS Range (Mpc)		Number of GW–GRB detections			
		LIGO	Virgo	All Sky	Fermi GBM	Swift BAT	
$\begin{array}{r} 2015\\ 201617\\ 201718\\ 2019\text{+}\\ 2022\text{+} \end{array}$	3 months 6 months 9 months (per year) (per year)	40 - 80 80 - 120 120-170 200 200	- 20 - 60 60 - 85 65 - 130 130	$2 \times 10^{-4} - 0.02$ 0.004 - 0.2 0.02 - 0.8 0.1 - 2 0.2 - 3	$2 \times 10^{-4} - 0.02$ 0.003 - 0.1 0.01 - 0.5 0.07 - 1 0.1 - 2	$3 \times 10^{-5} - 0.003$ $3 \times 10^{-4} - 0.03$ $7 \times 10^{-4} - 0.1$ 0.01 - 0.2 0.02 - 0.3	

If short bursts are from NS-BH binaries:

Epoch	Run Duration	NSBH Range (Mpc)		Number of GW–GRB detections			
		LIGO	Virgo	All Sky	Fermi GBM	Swift BAT	
$\begin{array}{r} 2015\\ 201617\\ 201718\\ 2019\text{+} \end{array}$	3 months 6 months 9 months (per year)	70 - 130 130 - 200 200 - 280 330	- 30 - 100 100 - 140 110 - 220	$3 \times 10^{-4} - 0.06$ 0.005 - 0.5 0.03 - 2 0.2 - 6	$2 \times 10^{-4} - 0.03$ 0.003 - 0.3 0.02 - 1 0.1 - 2	$\begin{array}{c} 4 \times 10^{-5} - 0.007 \\ 7 \times 10^{-4} - 0.07 \\ 0.004 - 0.3 \\ 0.02 - 0.5 \end{array}$	
2022 +	(per year)	330	220	0.4 - 10	0.2 - 3	0.03 - 0.7	

From Clark et al, ApJ (2015)

EQUATION OF STATE FROM JOINT GW-EM OBSERVATIONS

all EOS

- GW measurement
 restricts masses to one
 line
- EM emission for given masses depends on equation of state

From Pannarale and Ohme, ApJL (2015)

SUPERNOVA SEARCHES

- GW from a galactic supernova should be observable
- Maybe also for nearby galaxies

From Ott (2013)

SUPERNOVA SEARCHES

Time of supernova explosion not well known: typically will not have GW data covering the full time range

DISCUSSION

- Advanced LIGO will begin its first observing run next month
- Virgo will join later runs and sensitivity of both LIGO and Virgo will improve over time
- We will search for generic GW transients and binary mergers: detections likely in the next few years.
- Observations will allow for measurements of waveforms and parameters
- Joint searches with EM and Neutrino partners will give more complete picture of sources