Setting the stage: GW++

NS mergers as multimesenger systems - (GRBs) Macronovae, Radio Flares and neutrinos Tsvi Piran The Hebrew University of Jerusalem Kenta Hotokezaka, Ehud Nakar, Ben Margalit, Doron

Grossman, Stephan Rosswog

OUTLINE

- Why ++: why do we care about EM counterparts?
- Overview of mass ejection components
- Macronova/kilonova
- Radio Flares

Why EM signal? (Kochaneck & Piran 1993)

 Improves detectability
 Essential for localization
 <u>Much more physics:</u> Nucleosynthesis, neutrinos, magnetic fields

The Gravitaitional Waves Challenge

Nissanke + 13

Kochaneck +TP 93: need an EM counterpart

GRBs are beamed -> unlikely to catch the GRB

Off axis emission is too weak

What is a really short GRB? Pnc: Non-Collapsar Probability

BATSE

Swift

See http://www.phys.huji.ac.il/~tsvi/SGRB_Probability

Mergers ejects $0.01-0.04M_{sun}$ with $E_k \sim 10^{49}-10^{51}$ ergs

Stephan Rosswog

Mergers ejects $0.01-0.04M_{sun}$ with $E_k \sim 10^{49}-10^{51}$ ergs

Stephan Rosswog

Outflows from mergers

Available Energy

 10⁴⁹-10⁵¹ ergs of <u>kinetic energy</u> ====> GRB, GRB afterglow, Radio flare + ??
 10⁴⁹-10⁵¹ ergs of Poynting flux? ====> GRB?

^(a) ^(10⁵⁰) ergs of <u>radioactive</u> energy = Macronova/kilonova

Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.
- * Kilonova

Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

* Kilonova Hektaneva Decanova

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Radioactive Decay Korobkin + 13; Rosswog, Korobkin + 13

 After a second dE/dt∝t^{-1.3} (Freiburghaus+ 1999; Korobkin + 2013)

Photons escape from this region

The light curve depends on

- 1. mass
- 2. velocity
- 3. opacity

luminosity

Increase as we see a large fraction of the matter. Decrease due to radioactive decay

time

Macronova

Photons escape from this region

The light curve depends on

- 1. mass
- 2. velocity
- 3. opacity

luminosity

Increase as we see a large fraction of the matter. Decrease due to radioactive decay

time

Macronova

Peak time and peak luminosity

Diffusion time = expansion time <=> Mass of the "emitting region"

Luminosity

$$L(t) = \dot{\epsilon}(t)m(v) = \dot{\epsilon}_0(t/t_0)^{-\alpha}m(v)$$

Radioactive heating rate "

The peak time

$$\tilde{t}_p \approx \sqrt{\frac{\kappa m_{\rm ej}}{4\pi c \bar{v}}} = 4.9 \,\mathrm{days} \left(\frac{\kappa_{10} m_{\rm ej,-2}}{\bar{v}_{-1}}\right)^{1/2}$$

The peak luminosity

$$\tilde{L}_{p} \approx \dot{\epsilon}_{0} m_{\rm ej} \left(\frac{\kappa m_{\rm ej}}{4\pi c \bar{v} t_{0}^{2}}\right)^{-\alpha/2} = 2.5 \times 10^{40} \,\frac{\rm erg}{\rm s} \,\left(\frac{\bar{v}_{-1}}{\kappa_{10}}\right)^{\alpha/2} m_{\rm ej,-2}^{1-\alpha/2}$$

Macronova light curves Metzger et al., 2011; TP, Nakar, Rosswog, 13

Macronova light curves Metzger et al., 2011; TP, Nakar, Rosswog, 13

\$\kappa = 10cm²/gm
\$\mathbf{t}_{max} \propto \kappa^{1/2} => longer
\$\begin{array}{c} L_{max} \propto \kappa^{-0.65} => weaker
\$\mathbf{T} \propto \kappa^{-0.4} => redder

\$\kappa = 10cm²/gm
\$\mathbf{t}_{max} \propto \kappa^{1/2} => longer
\$\begin{array}{c} L_{max} \propto \kappa^{-0.65} => weaker
\$\mathbf{T} \propto \kappa^{-0.4} => redder

\$\kappa \kappa = 10cm²/gm
\$\mathcal{t}_{max} \propto \kappa^{1/2} => longer
\$\begin{array}{c} L_{max} \propto \kappa^{-0.65} => weaker
\$\mathcal{T} \propto \kappa^{-0.4} => redder

\$\kappa \kappa = 10cm²/gm
\$\mathcal{t}_{max} \propto \kappa^{1/2} => longer
\$\begin{array}{c} L_{max} \propto \kappa^{-0.65} => weaker
\$\mathcal{T} \propto \kappa^{-0.4} => redder

1.2-1.0

1

days

10

 $\kappa = 10 \text{ cm}^2/\text{gm}$ $\kappa = 10 \text{ cm}^2/\text{gm}$ $t_{\text{max}} \propto \kappa^{1/2} => \underline{longer}$ $L_{\text{max}} \propto \kappa^{-0.65} => \underline{\text{weaker}}$ $T \propto \kappa^{-0.4} => \underline{\text{redder}}$ $10^{41} \text{ sc}^{-1.4-1.2} \text{ sc}^{-1.4-1.$

uv or optical -> IR

Non Sphericity Grossman, Korobkin TP Rosswog, 13

Bolometric light curves

wind + dynamical ejecta

Figure 11. Combined light curves for the 1.3 - 1.4 M_{\odot} configuration from the dynamically ejected material and the neutrinodriven wind.

Macronova following Gamma-Ray Burst (GRB) 130603B

GRB 130603B Z=0.356 <=> 1 Gpc = 3 Glyr

GRB130603B @ 9 days AB (6.6 days at the source frame)

HST image (Tanvir + 13)

Macronova? need about 0.04 mo

Tanvir + 13, Berger + 13

Warning X-ray powered macronova? (Kisaka, Ioka, Nakar – in prep)

Also GRB 080503

The Macronova in 060614 Bin Yang et al., Nature Phys. 2015 Ø 060614 – a nearby "long-short" burst 15-25 keV 0.3 0.2 @ 102 sec 0.1 25-50 keV 0.4 0.2 Counts/sec/det 0 No SNe 0.4 50-100 keV 0.3 0.2 0.1 0 0.1 100-150 ke\ 0.05 @ z=0.125 15-150 keV (Sum of 4 panels above) 0.5 100 150 200 50 Time since the BAT trigger [sec] 15-150 keV (64 ms binning)

Counts/sec/det

Time since the BAT trigger [sec]
The Macronova in 060614 Bin Yang et al., Nature Phys. 2015 © 060614 - a nearby "long-short" burst

102 sec
No SNe
z=0.125

FIG. 1. The afterglow emission of GRB 060614. The VLT and HST observation magnitudes including their 1σ statistical errors of the photon noise and the sky variance and the 3σ upper limits (the downward arrows) are adopted from Supplementary Table 1. The small amounts of foreground and host extinction have not been corrected. Note that the VLT V/I band data have been calibrated to the HST F606W/F814W filters with proper k-corrections (see the Methods). The VLT data (the circles) are canonical fireball afterglow emission while the HST F814W detection (marked in the square) at $t \sim 13.6$ day is significantly in excess of the same extrapolated power-law decline (see the residual), which is at odds with the afterglow model. The F814W-band lightcurve of SN 2008ha²⁵ expected at z = 0.125 is also presented for comparison. The dashed lines are macronova model light curves generated from numerical simulation²⁸ for the ejecta from a black hole-neutron star merger. Error bars represent s.e.

FIG. 1. The afterglow emission of GRB 060614. The VLT and HST observation magnitudes including their 1σ statistical errors of the photon noise and the sky variance and the 3σ upper limits (the downward arrows) are adopted from Supplementary Table 1. The small amounts of foreground and host extinction have not been corrected. Note that the VLT V/I band data have been calibrated to the HST F606W/F814W filters with proper k-corrections (see the Methods). The VLT data (the circles) are canonical fireball afterglow emission while the HST F814W detection (marked in the square) at $t \sim 13.6$ day is significantly in excess of the same extrapolated power-law decline (see the residual), which is at odds with the afterglow model. The F814W-band lightcurve of SN 2008ha²⁵ expected at z = 0.125 is also presented for comparison. The dashed lines are macronova model light curves generated from numerical simulation²⁸ for the ejecta from a black hole-neutron star merger. Error bars represent s.e.

FIG. 1. The afterglow emission of GRB 060614. The VLT and HST observation magnitudes including their 1σ statistical errors of the photon noise and the sky variance and the 3σ upper limits (the downward arrows) are adopted from Supplementary Table 1. The small amounts of foreground and host extinction have not been corrected. Note that the VLT V/I band data have been calibrated to the HST F606W/F814W filters with proper k-corrections (see the Methods). The VLT data (the circles) are canonical fireball afterglow emission while the HST F814W detection (marked in the square) at $t \sim 13.6$ day is significantly in excess of the same extrapolated power-law decline (see the residual), which is at odds with the afterglow model. The F814W-band lightcurve of SN 2008ha²⁵ expected at z = 0.125 is also presented for comparison. The dashed lines are macronova model light curves generated from numerical simulation²⁸ for the ejecta from a black hole-neutron star merger. Error bars represent s.e.

Independent Analysis

Zach Cano 2015

Peak time and peak luminosity

Diffusion time = expansion time <=> Mass of the "emitting region"

$$\frac{m(v)}{v} = \frac{4\pi ct^2}{\kappa}$$

Luminosity

$$L(t) = \dot{\epsilon}(t)m(v) = \dot{\epsilon}_0(t/t_0)^{-\alpha}m(v)$$

Radioactive heating rate

The peak time

$$\tilde{t}_p \approx \sqrt{\frac{\kappa m_{\rm ej}}{4\pi c \bar{v}}} = 4.9 \,\mathrm{days} \left(\frac{\kappa_{10} m_{\rm ej,-2}}{\bar{v}_{-1}}\right)^{1/2}$$

The peak luminosity

$$\tilde{L}_{p} \approx \dot{\epsilon}_{0} m_{\rm ej} \left(\frac{\kappa m_{\rm ej}}{4\pi c \bar{v} t_{0}^{2}}\right)^{-\alpha/2} = 2.5 \times 10^{40} \,\frac{\rm erg}{\rm s} \,\left(\frac{\bar{v}_{-1}}{\kappa_{10}}\right)^{\alpha/2} m_{\rm ej,-2}^{1-\alpha/2}$$

Not so easy

Peak at 10-13 days -> ~ 0.1 M_{sun} -> ?

Black Hole - NS merger?

Macronova

Macronova

Nucleosynthesis Lattimer Schramm 76

Macronova

Nucleosynthesis Lattimer Schramm 76

Eichler, Livio Piran, Schramm 89

Questions about energy deposition (Hotokezaka + TP, in prep)

Questions about energy deposition (Hotokezaka + TP, in prep)

Figure 1. Energy generation rate (upper) and the energy fraction carried by each type of radiations (bottom).

 γ -rays heating is lost very early!

Implications

• A weaker macronova signal (less heating)

Implications

A weaker macronova signal (less heating)

• A new (too weak) hard x-ray soft γ counterpart

Implications

A weaker macronova signal (less heating)

• A new (too weak) hard x-ray soft γ counterpart

• nustar and Integral @ 10⁶ sec integration

The kinetic energy - Radio Flares (Nakar & Piran 2011)

Interaction of the sub or mildly relativistic outflow with the ISM produces a long lived radio flare

Supernova -> SNR macronova -> Radio Flare

Radio Supernova e.g. 1998bw (Chevalier 98)

 $e_e = \varepsilon_e e$ $e_B = B^2 / 8\pi = \varepsilon_B e$ $N(x) \propto x^{-p}$ for $x \gg x_m$ p = 2.5 - 3 $x_m = (m_p / m_e) e_e (\Gamma - 1)$ $V = (3/4\pi) eB x^2$ $F_V = (\sigma_T c / e) N_e B$

Frequency and Intensity (Nakar & TP Nature, 2011)

$$\nu_{m,dec} \equiv \nu_m(t_{dec}) \approx 1 \text{ GHz } n^{1/2} \epsilon_{B,-1}^{1/2} \epsilon_{e,-1}^2 (\Gamma_0 - 1)^{5/2},$$

$$F_{v_{obs},peak} \left[v_{obs} > v_{m,dec}, v_{a,dec} \right] \approx \\ 0.3E_{49} n_0^{\frac{p+1}{4}} \varepsilon_{B,-1}^{\frac{p+1}{4}} \varepsilon_{e,-1}^{p-1} \beta_i^{\frac{5p-7}{2}} d_{27}^{-2} \left(\frac{v_{obs}}{1.4} \right)^{-\frac{p-1}{2}}$$

Radio Flares

Regime	$F_{\nu_{obs},peak}/F_{m,dec}$	t_{peak}/t_{dec}	$F_{\nu_{obs}}$	$F^{\dagger}_{\nu_{obs}}$
			$t > t_{peak}$	$t < t_{peak}$
$\nu_{m,dec}, \nu_{a,dec} < \nu_{obs}$	$(\nu_{obs}/\nu_{m,dec})^{-\frac{p-1}{2}}$	1	$\propto t^{-rac{15p-21}{10}}$	$\propto t^3$
$\nu_{eq} < \nu_{obs} < \nu_{m,dec}$	$(\nu_{obs}/\nu_{m,dec})^{-1/5}$	$(\nu_{obs}/\nu_{m,dec})^{-1/3}$	$\propto t^{-\frac{15p-21}{10}}$	$\propto t^{\frac{8}{5}}$
$\nu_{obs} < \nu_{eq}, \nu_{a,dec}$	$\nu_{m,dec}^{\frac{p-1}{2}}$ $\nu_{a,dec}^{-\frac{3(p+4)(5p-7)}{10(3p-2)}}$ $\nu_{obs}^{\frac{(32p-47)}{5(3p-2)}}$	$(\nu_{obs}/\nu_{a,dec})^{-rac{4+p}{3p-2}}$	$\propto t^{-rac{15p-21}{10}}$	$\propto t^{\frac{3}{2}}$

Effect of sphericity Margalit & Piran 15

Additional Components

Hotokezaka & TP 15

Limits on GRB 130603B and 060614 Horesh, TP Nakar in prep

Metzger & Bower 14

060614 < 300 μjy @ 8 years
The limits for \$2060614 ==> rule out a Magner \$2/in ternal densities down to n \$20 μJy here ==> rule out a Magnetar down to n~0.1

Radio facilities for GW-EM Counterpart Searches: EVLA

- The 500-lb gorilla of radio astronomy
- 27 25-m antennas
- Upgrade project almost finished.
 Will deliver order of magnitude increase in continuum sensitivity
- I-50 GHz + 74 and 327 MHz
- I-hrs, rms~7 uJy at I.4 GHz
- Responds to external triggers
- Sub-arrays can be used to image a large (irregular) error box

Dale Frail⁹

Radio facilities for GW-EM Counterpart Searches: EVLA

- The 500-lb gorilla of radio astronomy
- 27 25-m antennas
- Upgrade project almost finished.
 Will deliver order of magnitude increase in continuum sensitivity
- I-50 GHz + 74 and 327 MHz
- I-hrs, rms~7 uJy at I.4 GHz
- Responds to external triggers
- Sub-arrays can be used to image a large (irregular) error box

Dale Frail⁹

Radio facilities for GW-EM Counterpart Searches

Radio Facility	Observing Freq.	Field of View	1 hr rms	Beam	Start Date
ASKAP	1.4 GHz	30 deg ²	30 uJy	20″	2013
Apertif	1.4 GHz	8 deg ²	50 uJy	15″	2013
MeerKAT	1.4 GHz	1.5 deg ²	35 uJy	15″	2013
EVLA	1.4 GHz	0.25 deg ²	7 uJy	1.3-45″	2010
EVLA	327 MHz	5 deg ²	2 mJy	5-18″	2011
LOFAR	110-240 MHz	50 deg ²	1 mJy	5″	2011
EVLA	74 MHz	100 deg ²	50 mJy	25-80"	2011
MWA	80-300 MHz	1000 deg ²	8 mJy	300"	2011+
LOFAR	15-80 MHz	500 deg ²	8 mJy	120″	2011

(Only Apertif, EVLA, LOFAR has demonstrated noise perfprmance)

Dale Frail

 $N_{all-sky}(1.4 {\rm GHz}) \approx 20 E_{49}^{11/6} n^{\frac{9p-1}{24}} \epsilon_{B,-1}^{\frac{3(p+1)}{8}} \epsilon_{e,-1}^{\frac{3(p-1)}{2}} (\Gamma_0 - 1)^{\frac{45p-83}{24}} \mathcal{R}_{300} F_{lim,-1}^{-3/2} \; .$

 $N_{all-sky}(1.4 {\rm GHz}) \approx 20 E_{49}^{11/6} n^{\frac{9p-1}{24}} \epsilon_{B,-1}^{\frac{3(p+1)}{8}} \epsilon_{e,-1}^{\frac{3(p-1)}{2}} (\Gamma_0 - 1)^{\frac{45p-83}{24}} \mathcal{R}_{300} F_{lim,-1}^{-3/2} \; .$

 $N_{all-sky}(1.4 {\rm GHz}) \approx 20 E_{49}^{11/6} n^{\frac{9p-1}{24}} \epsilon_{B,-1}^{\frac{3(p+1)}{8}} \epsilon_{e,-1}^{\frac{3(p-1)}{2}} (\Gamma_0 - 1)^{\frac{45p-83}{24}} \mathcal{R}_{300} F_{lim,-1}^{-3/2} \; .$

Summary

- A detection of a macronova like signal in 060614
- But need 0.1 Msun ?
- Solution Lower efficiency because of leakage of γ
- IF Macronova ==> R process nucleosynthesis + sGRBs from Mergers
- Radio flares are a second type of EM counterparts that can follow Mergers (long term – advantage)
- Detectablity prospects of radio flares is reasonable as a follow up for GW detection (Hotokezaka et al. in preparation)
- Limits on Radio Flares already limit Magnetar model in two GRBs

Summary

- A detection of a macronova like signal in 060614
- But need 0.1 Msun ?
- Solution Lower efficiency because of leakage of γ
- IF Macronova ==> R process nucleosynthesis + sGRBs from Mergers
- Radio flares are a second type of EM counterparts that can follow Mergers (long term – advantage)
- Detectablity prospects of radio flares is reasonable as a follow up for GW detection (Hotokezaka et al. in preparation)
- Limits on Radio Flares already limit Magnetar model in two GRBs

