The and Ally for Scientific Research on Innovative Areas 重力波天体の多様な観測による宇宙物理学の新展開 New development in astrophysics through multimessenger observations of gravitational wave sources

Dynamical mass ejection from BNS merger and r-process nucleosynthesis

Yuichiro Sekiguchi (Toho Univ.)

Wanajo (RIKEN), N. Nishimura (Keele Univ.) K. Kyutoku (UMW), K. Kiuchi, M. Shibata (YITP)

What is the cite of r-process ?

Supernova (SN) explosion (+ PNS v-driven wind): (Burbidge et al. 1957)

- Review by Frohlich
 - Entropy is not so high as previously expacted
 - difficulty in preserving n-rich condition (Roberts et al. 2010, 2012)
- difficulty in satisfying the universality
- Bad news from Piran

NS-NS(/BH) binary merger: (Lattimer & Schramm 1974)

- problem in chemical evolution (Argust et al. 2004)
 - Resolution by Ishimaru et al. (2015); Hirai et al. in prep.
- difficulty in satisfying the universality : too neutron rich ejecta
 - Topic of this talk
- Good news by Piran

Sneden et al. (2008)

- Abundance pattern comparison :
 - r-rich low metallicity stars
 - Solar neighborhood
- Low metallicity suggests
- Such stars experience a few r-process events
- Such stars preserve the original pattern of the r-process events (chemical fossil)

The solar and chemical fossil patterns agree well for Z >~ 55

suggests that <u>r-process event synthesize</u> <u>heavy elements with a</u> <u>pattern similar to solar</u> <u>pattern (Univsersality)</u>

The patterns agree approximately for 35 < Z < 50 but show some diversity (factor of few)

(1) <u>Multiple origins</u>

(1a) only light + only heavy

(1) <u>Multiple origins</u> (1a) only light + only heavy (1b) only light + both

(1) <u>Multiple origins</u>
(1a) only light + only heavy
(1b) only light + both

(2) Single origin

An event synthesize all the range with diversity in 35 < Z < 50 due to some reason

(1) <u>Multiple origins</u>
(1a) only light + only heavy
(1b) only light + both

(2) Single origin

An event synthesize all the range with diversity in 35 < Z < 50 due to some reason

Low metallicity

- a few events should result in these pattern
- Let us consider (2) single origin : NS-NS model

From the 'Universality' point of view : NS-NS merger ejecta: too neutron-rich ?

- Goriely et al. 2011; Bauswein et al. 2013
 - Approx. GR SPH sim. without weak interactions
 - No way to change Ye => ejecta remains n-rich (initial low Ye)
 - See also post-process calculation of weak interactions
- Korobkin et al. 2012; Rosswog et al. 2013
 - Newtonian SPH sim. with neutrino
 - tidal mass ejection (explained in the next slide) of 'pure' neutron star matter
- Ejecta is very n-rich with Ye < 0.1</p>

Mass ejection from BNS merger (1) : Tidal torque + centrifugal force

- Less massive NS is tidally deformed —
- Angular momentum transfer by spiral arm and swing-by
- A part of matter is ejected along the orbital plane
- reflects low Ye of cold
 <u>NS</u> (β-eq. at T~0),
 no shock heating,
 rapid expansion
 (fast T drop), no time
 to change Ye by weak
 interactions

Density contour [log (g/cm³)]

t=11.81719 ms

t=11.35916 ms

t=11.63398 ms

t=11.90880 ms

Hotokezaka et al. (2013)

t=11.72559 ms

t=12.00041 ms

From the 'Universality' point of view : NS-NS merger ejecta: too neutron-rich ?

- Korobkin et al. 2012; Rosswog et al. 2013; see also Goriely et al. 2011
 - tidal mass ejection of 'pure' neutron star matter (very n-rich) with Ye < 0.1</p>
 - Ye is that of T=0, β-equilibrium
 - strong r-process with fission recycling only 2nd (A~130; N=82) and 3rd (A~195; N=126) peaks are produced (few nuclei in A=90-120)
 - the resulting abundance pattern does not satisfy universality in A=90-120

How to satisfy the universality

Electron fraction (Ye) is a key parameter : Ye ~ 0.2 is critical threshold

- Ye < 0.2 : strong r-process \Rightarrow nuclei with A>130 (the pattern is robust)
- Ye > 0.2 : weak r-process \Rightarrow nuclei with A< 130 (for larger Ye, nuclei with smaller A)

Korobkin et al. 2012

How to satisfy the universality

- Introduce new ejecta components
 - Neutrino driven winds from the remnant system
 - Perego's talk, Krobkin's talk
 - Dessart et al. (2009); Grossman et al. (2014); Perego et al. (2014); Just et al. (2015)
 - late time disk/torus disintegration
 - Fernandez & Metzger (2013)
 - It is not clear whether it is possible to satisfy the universality robustly

How to satisfy the universality

- Introduce new ejecta components
 - Neutrino driven winds from the remnant system
 - Dessart et al. (2009); Grossman et al. (2014); Perego et al. (2014); Just et al. (2015)
 - late time disk/torus disintegration
 - Fernandez & Metzger (2013)
- Take into account effects of both <u>GR and weak interaction</u> in the dynamical ejecta (this talk)

What will change if you include GR and microphysics (1) : Stronger shock in GR

van Riper (1988) ApJ <u>326</u> 235

Mass ejection from BNS merger (2): Shock driven components

- > Shocks occur due to oscillations of massive NS and collisions of spiral arms
- Isotropic mass ejection, higher temperature (weak interactions set in)

What will change if you include GR and microphysics (1) : Stronger shock in GR

Newtonian simulation by S. Rosswog et al.

Almost no isotropic component (shock-driven) in Newtonian simulation Only the tidal component

Full GR simulation by Y. Sekiguchi et al.

-1500 -1000 -500 0 500 1000 1500

2000

What will change if you include GR and microphysics (2) : Ye can change via weak interaction

Previous studies and our study

- **Korobkin et al. 2012 :** Newtonian SPH simulations with neutrinos
- **Bauswein et al. 2013:** Relativistic SPH simulations with many EOS but without neutronos
- This Study : Full GR, approximate gray radiation hydrodynamics simulation with multiple EOS and neutrinos (brief summary of code is in appendix of lecture note)

1.5

- Einstein's equations: Puncture-BSSN/Z4c formalism
- **GR radiation-hydrodynamics** (*neutrino heating can be approximately treated*)
 - Advection terms : Truncated Moment scheme (Shibata et al. 2011)
 - EOS : any tabulated EOS with 3D smooth connection to Timmes EOS
 - gray or multi-energy but advection in energy is not included
 - Fully covariant and relativistic M-1 closure
 - Source terms : two options
 - Implicit treatment : Bruenn's prescription
 - Explicit treatment : trapped/streaming v's
 - e-captures: thermal unblocking/weak magnetism; NSE rate
 - □ Iso-energy scattering : recoil, Coulomb, finite size
 - □ e±annihilation, plasmon decay, bremsstrahlung
 - □ diffusion rate (Rosswog & Liebendoerfer 2004)
 - two (beta- and non-beta) EOS method
 - Lepton conservation equations

Adopted EOS & (expected) Mass ejection mechanism

- <u>'Stiffer EOS'</u>
 - $\Leftrightarrow \mathsf{R}_{\mathsf{NS}} : \mathsf{larger}$
 - TM1, TMA
 - Tidal-driven dominant
 - Ejecta consist of low T & Ye
 NS matter
- <u>'Intermediate EOS'</u>
 - **DD2**
- <u>'Softer EOS'</u>
 - $\Leftrightarrow \mathsf{R}_{\mathsf{NS}} : \mathsf{smaller}$
 - SFHo, IUFSU
 - Tidal-driven less dominant
 - Shock-driven dominant
 - Ye can change via weak processes

See also, Bauswein et al. (2013); Just et al. (2014)

Entropy per baryon : DD2 relatively **stiff**, tidal component dominated

Ye : DD2 relatively **stiff**, tidal component dominated

Entropy per baryon : SFHo relatively **soft**, multiple shock components

Ye : SFHo relatively **soft**, multiple shock components

Soft(SFHo) vs. Stiff(TM1): Ejecta temperature

- Soft (SFHo): temperature of unbound ejecta is higher (as 1MeV) due to the shock heating, and produce copious positrons
- Stiff (TM1): temperature is much lower

Sekiguchi et al PRD (2015)

Soft(SFHo) vs. Stiff(TM1): Ejecta Ye = 1- Yn

- Soft (SFHo): In the shocked regions, Ye >> 0.2 by weak processes
- Stiff (TM1): Ye is low as < 0.2 (only strong r-process expected)</p>

EOS dependence : 1.35-1.35 NS-NS

Wanajo, Sekiguchi et al. ApJL (2014)

Achievement of the universality (soft EOS (SFHo), equal mass (1.35-1.35))

- The Ye-distribution histogram has a broad, flat structure (<u>Wanajo, Sekiguchi, et al. (2014)</u>.)
 - Mixture of all Ye gives a good agreement with the solar abundance !
 - Robustness of Universality (dependence on binary parameters)

Unequal mass NS-NS system: SFHo1.25-1.45

- Orbital plane : Tidal effects play a role, ejecta is neutron rich
- Meridian plane : shock + neutrinos play roles, ejecta less neutron rich

Ye

Sekiguchi et al PRD (2015); Prego et al. (2014); Just et al. (2014); Goriely et al. (2015); Martin et al. (2015)

Summary

Neutrino-Radiation-Hydrodynamics in numerical relativity is now feasible !

- based on truncated moment formalism with M-1 closure
- both implicit and explicit schemes can be adopted

Importance of GR, neutrinos and EOS for r-process in BNS merger

- strong EOS dependence : challenge to the robustness (Korobkin et al. 2012)
- For a softer EOS shock heating is more important and ejecta T increases
- As a result, positron capture proceeds more and ejecta Ye increases
- Resulting r-process yield agrees well with the solar abundance
- BNS merger as origin of heavy elements ?
- Future studies
 - Further investigation of EOS dependence
 - Long-term simulations to see neutrino heating effects
 - EM counterpart study based on r-process nucleosynthesis calculation
 - BH-NS, Collapsar, etc.

Dynamical ejecta mass and mass ratio

- Dynamical ejecta mass basically increases as the mass ratio decreases
 - This is likely to be true for tidal-component
- For stiff EOS (less compact NS), mass ratio plays important role
 - For softer EOS (APR: more compact NS), ejecta mass is almost independent of mass ratio

e.g., Matteucci et al. 2014, MNRAS, 438, 2177; Komiya et al. 2014, ApJ, 783, 132, Tsujimoto & Shigeyama, A&A, 565, L5

From a chemical evolution point of view

- Two problems to be resolved (Argast et al. 2004)
 - delayed appearance of r-process element (long merger time ~ 100Myr)
 - ▶ large star-to-star scattering (low event rate (~ 10⁻⁵/yr/gal)

From a chemical evolution point of view

- Resolution of the delay time problem
 - b due to merger time of ~ 100 Myr:
 - In the dwarf galaxies, chemical enrichment is different from that in the ordinary galaxies due to less deep gravitational potential.
 - Fe produced in SNe can escape from the dwarf galaxies more efficiently than normal galaxies
 - => it takes more time for the dwarf galaxies to become Fe rich than in normal galaxies
 - Studies taken into account this indicate that merger time of 100 Myr is not inconsistent with the observations (Ishimaru et al. 2015; Hirai et al. in prep.)

Observations of dwarf galaxies

- No enrichment of Eu in ultra dwarf galaxies but Fe increases
 - No r-process events (No Eu) but a number of SNe (Fe个)
 - If SNe are the r-process cite, both Eu and Fe should increase
 - Suggest different origin for Fe and Eu
 - Enrichment of Eu in massive dwarfs
 - ▶ event rate is estimate as 1/1000 of SNe : consistent with BNS merger

Observations of dwarf galaxies

- No enrichment of Eu in ultra dwarf galaxies but Fe increases
 - No r-process events (No Eu) but a number of SNe (Fe个)
 - If SNe are the r-process cite, both Eu and Fe should increase
 - Suggest different origin for Fe and Eu
 - Enrichment of Eu in massive dwarfs
 - ▶ event rate is estimate as 1/1000 of SNe : consistent with BNS merger

Further observational evidence ? Kilo-nova/Macro-nova/r-process-nova

EM transients possibly powered by radioactivity of the r-process elements were expected (Li & Paczynski 1998) and found (<u>important GW counterpart</u>)

A 'kilonova' associated with the short-duration γ-ray burst GRB130603B

N. R. Tanvir¹, A. J. Levan², A. S. Fruchter³, J. Hjorth⁴, R. A. Hounsell³, K

LETTER

Short-duration γ -ray bursts are intense flashes of cosmic γ -rays, lasting less than about two seconds, whose origin is unclear^{1,2}. The favoured hypothesis is that they are produced by a relativistic jet created by the merger of two compact stellar objects (specifically two neutron stars or a neutron star and a black hole). This is supported by indirect evidence such as the properties of their host galaxies³, but unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species^{4,5}, whose decay should result in a faint transient, known as a 'kilonova', in the days following the burst⁶⁻⁸. Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe^{5,9}.

doi:10.1038/nature12505