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Abstract—Data sets resulting from physical simulations typically contain a multitude of physical variables. It is, therefore, desirable
that visualization methods take into account the entire multi-field volume data rather than concentrating on one variable. We present a
visualization approach based on surface extraction from multi-field particle volume data. The surfaces segment the data with respect
to the underlying multi-variate function. Decisions on segmentation properties are based on the analysis of the multi-dimensional
feature space. The feature space exploration is performed by an automated multi-dimensional hierarchical clustering method, whose
resulting density clusters are shown in the form of density level sets in a 3D star coordinate layout. In the star coordinate layout, the
user can select clusters of interest. A selected cluster in feature space corresponds to a segmenting surface in object space. Based
on the segmentation property induced by the cluster membership, we extract a surface from the volume data. Our driving applications
are Smoothed Particle Hydrodynamics (SPH) simulations, where each particle carries multiple properties. The data sets are given
in the form of unstructured point-based volume data. We directly extract our surfaces from such data without prior resampling or
grid generation. The surface extraction computes individual points on the surface, which is supported by an efficient neighborhood
computation. The extracted surface points are rendered using point-based rendering operations. Our approach combines methods
in scientific visualization for object-space operations with methods in information visualization for feature-space operations.

Index Terms—Multi-field and multi-variate visualization, isosurfaces and surface extraction, point-based visualization, star coordi-
nates, visualization in astrophysics, particle simulations.

1 INTRODUCTION

The Smoothed Particle Hydrodynamics (SPH) method is frequently
employed in astrophysics because of its natural adaptivity. Being com-
pletely Lagrangian, the interpolation points (“particles”) follow the hy-
drodynamic flow and are thus not constrained by any prescribed grid
structure. Since the particle masses are usually kept fixed to exactly
conserve mass, this naturally leads to well-sampled high-density re-
gions with the drawback that low-mass density zones are less well
sampled by SPH particles.Consequently, SPH simulations often pro-
duce highly clustered particle distributions. In Section 2, we give more
background information on SPH simulations.

Navratil et al. [31] expressed in their IEEE Visualization 2007 ap-
plication paper that it would be desirable to have surface extraction
techniques that directly operate on cosmological particle-based data,
i. e. point-based volume data. Since there was no tool publically avail-
able that provided such functionality, they decided to use an inverse-
distance-based interpolation over a regular grid prior to applying stan-
dard grid-based surface extraction.

The preference to avoid such a resampling is based on the poten-
tially high error introduced when operating on highly adaptive SPH
data. An extremely high sampling rate would have to be used to en-
sure that no information is lost in well-resolved high density areas,
i. e. small areas with many particles. With such a high sampling rate
one would introduce a lot of redundancy in less densely populated ar-
eas and would significantly blow up the amount of data to a hardly
manageable size. To avoid such an effect, one would have to use an
adaptive resampling, which would no longer allow for the direct appli-
cation of standard visualization techniques. Instead of trying to deal
with such adaptively resampled meshes, it would be more desirable to
avoid resampling errors completely by directly operating on the par-
ticle data. Hence, we developed visualization techniques that directly
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operate on point-based volume data with a large number of points.
In most astrophysical simulations the underlying 3D data field is

multi-valued and includes several scalar quantities such as veloci-
ties, temperature, density, and, sometimes, mass fractions of different
chemical species. For the astrophysicists it is of great interest to ex-
amine interfaces between different materials, e. g. fuel and ashes, and
to observe the propagation of (e. g. ionization or burning) fronts over
time. For their visualization it is intuitive to use surface extractions.

The multi-dimensional feature space of the data sets will be an-
alyzed by applying automatic components coupled with intuitive in-
teraction mechanisms operating on appropriate visualization layouts.
An automatic multi-dimensional clustering based on density compu-
tations is proposed, whose results can be interactively analyzed af-
ter projecting it into non-orthogonal coordinates such as star coordi-
nates [23, 41]. The star coordinate layout is optimized to separate pro-
jected clusters while maintaining the structure of the individual clus-
ters. Interaction techniques in projected star coordinate space shall
allow for selection, refinement, and modification of clusters as well as
for reconfiguration of the parameter space and filtering of individual
data points. The feature space operations are described in Section 4.

The feature extraction result needs to be visualized in the volumet-
ric object space. We developed a boundary surface extraction method
for multi-dimensional features that directly operates on point-based
volume data. The boundary surface needs to separate those particles
that belong to the cluster from those that do not. Hence, local neigh-
borhood information for particles is required. We developed a kd-
tree structure with an efficient indexing scheme that supports efficient
neighborhood estimation. Surface boundaries are extracted in the form
of a set of points located on the surfaces. These point clouds are ren-
dered using point-based surface rendering methods. The object space
operations are described in Section 5.

The coupled system of feature-space operations including auto-
matic clustering and interactive visual exploration and the object-space
operations including efficient direct surface extraction and rendering
makes for a powerful analysis tool of multi-field SPH simulation data.
In Section 6, we demonstrate how these techniques can be applied for
an intuitive analysis of real data.

2 SMOOTHED PARTICLE HYDRODYNAMICS

Smoothed Particle Hydrodynamics (SPH) is a completely Lagrangian,
meshfree scheme. Originally invented in an astrophysical context [27,



29] SPH has by now found its way into a wealth of different applica-
tions as diverse as breaking waves on beaches, liquid metal moulding,
elasticity and fracture problems, traffic flow simulations and giant im-
pacts on planets, see Monaghan [30] for a recent review.

Apart from its natural adaptivity SPH’s main strength is its excellent
conservation properties: even in discrete form it conserves mass, en-
ergy, linear and angular momentum by construction. For an ideal fluid,
no more than a Lagrangian, a prescription on how to obtain the matter
density by summation, and the first law of thermodynamics are needed
to obtain a completely conservative set of discretized equations.

The main idea is to approximate a quantity f at a point�r by sum-
ming up contributions from the neighboring particles, each weighted
by a kernel function W

f (�r) =∑
b

mb

ρb
fbW (�r−�rb,h) , (1)

where mb is the particle mass, ρb the density and fb the function value
at the position of particle b. The width of the kernel function W is
determined by the so-called smoothing length, h. The SPH prescrip-
tion for derivatives is to take the exact derivative of the above function
approximation ∇ f (�r) = ∑b

mb
ρb

fb∇W (�r−�rb,h).
In astrophysics, the method is mainly used to simulate the three-

dimensional Euler equations, often with a large variety of additional
physical effects such as radiative transfer [46], magnetic fields [36], or
nuclear burning [49]. For the examples given in this paper, we used a
cubic spline for kernel W with smoothing length h = 2.

3 RELATED WORK

3.1 Multi-field Spatial Data Visualization
Most spatial data visualization focus on one parameter, which may be
scalar, vector, or tensor-valued. Recently, attempts were made to gen-
eralize the visualization methods to multi-dimensional (scalar) volume
data that allow for the visual extraction of multi-dimensional features.

Sauber et al. [39] suggested to use multigraphs to generate com-
binations of multiple scalar fields, where the number of nodes in the
graph increase exponentially with the number of dimensions. Simi-
larly, Woodring and Chen [48] allowed for boolean set operations of
scalar field visualization. In this context, Akiba and Ma [1] and Blaas
et al. [7] were the first who used sophisticated visualization meth-
ods and interaction in the multi-dimensional feature space. Akiba and
Ma [1] suggested a tri-space visualization that couples parallel coor-
dinates in feature space with volume rendering in object space in ad-
dition to one-dimensional plots over time. Blaas et al. [7] use scatter
plots in feature space, where the multi-dimensional data is projected
into arbitrary planes.

Ivanovska et al. [20] use operations in multi-dimensional feature
space, where the feature space is three-dimensional and represented
the CIE L∗a∗b∗ color space. They couple automatic clustering algo-
rithms based on spatial subdivision of the multi-dimensional feature
space with interactions to split and merge clusters to define features
of interest. Their idea is similar to ours, but the clustering approaches
they applied were the standard ones.

Other approaches are based on statistics rather than interactive vi-
sual feature extraction: Jänicke et al. [22] use statistical measurements
to detect regions of a certain behavior in multi-dimensional volume
data, while Oeltze et al. [32] use correlation and principal component
analysis to visualize medical perfusion data.

3.2 Multi-dimensional Non-spatial Data Clustering and Vi-
sualization

A traditional way of displaying non-spatial data is the use of scatter
diagrams, which do not extend well to more than three dimensions.
To display multi-dimensional points in a visual space, non-orthogonal
coordinate systems such as parallel coordinates [19, 44] can be used.
Parallel vertical lines represent the different dimensions or attributes,
and individual records are represented by a polygonal line connecting
points on the parallel coordinate lines. A large community is using
parallel coordinates on a regular basis. Similarly, Andrews’ curves [3]

plot each d-dimensional point as a curved line using the function
f (t) = x1√

2
+ x2 sin(t)+ x3 cos(t)+ . . . where the d-dimensional point

is given by x=(x1, . . . ,xd). The function is usually plotted in the in-
terval [−π,π]. The striking advantage of these visualizations is that
they can represent many dimensions and one can easily understand
the relation between the dimensions or attributes. Several extensions
have been proposed to alleviate the inherent clutter problem for a large
number of records. However, the distribution of clusters in the multi-
dimensional space is not visually supported.

The Radviz (Radial visualization) approach [4] is similar in spirit to
the parallel coordinates. For d dimensions, the d lines emanate radially
from the center of a circle and terminate at the perimeter of the circle
at special end points. Similarly, the 2D star coordinates [23] arrange
the coordinate axes on a circle placed on a two-dimensional plane with
axes having their origin at the center of the circle and an arrangement
exposing equal angles between adjacent axes. However, a data point
x=(x1, . . . ,xd) of a d-dimensional data set is mapped to a point using
two-dimensional Cartesian coordinates and plotted as a single point.
The Viz3D approach [2] extended the Radviz approach by project-
ing the d-dimensional data into a 3D display space, and Shaik and
Yeasin [41] extended the 2D star coordinates to 3D star coordinates.

Wegman and Luo [45] proposed a method for visualizing density
for two- and three-dimensional non-spatial data sets. This density
function f (x) can be displayed by a series of contours in a plane, where
contours of level λ bound the subset Sλ = {x ∈ R

2 : f (x) = λ fmax}
where 0 < λ < 1 and fmax = supx f (x). A series of contours is rep-
resented in a three-dimensional display by depicting each contour of
level λ on the plane z = λ fmax, which leads to a density surface. For
the three-dimensional data sets, the respective density surface is in a
four-dimensional space such that the direct extension of this rendering
method cannot be implemented. The authors proposed to represent
series of density surfaces Sλ = {x ∈ R

3 : f (x) = λ fmax}, for distinct
levels λ , where again fmax = supx f (x). For high-dimensional data,
Scott and Sain [40] proposed an extension that they applied to data
sets up to dimensionality of six. The multivariate density function is
represented in a three-dimensional space by slices, where several vari-
ables are fixed.

In statistics, an attraction region of modes of multivariate density
functions is often regarded as a cluster. There are several approaches
that report how to identify clusters in large data sets based on com-
puting density. Hinneburg and Keim introduced the DENCLUE ap-
proach [17], where high density clusters are identified by determining
density attraction. Hinneburg et al. further introduced the HD-Eye sys-
tem [16] that uses visualization to find the best contracting projection
into a one- or two-dimensional space. The data is divided based on a
sequence of the best projections determined by the high density clus-
ters. The advantage of this method is that it does not divide regions of
high density.

3.3 Unstructured Point-based Data Visualization

Many efficient high-quality visualization methods exist for gridded
volume data, where the grid may exhibit a uniform structure or may be
formed by connecting arbitrarily distributed vertices like in unstruc-
tured tetrahedral meshes. Thus, a common strategy for visualizing
point-based volume data is to “convert” them into gridded volume
data. Such a conversion can be performed by interpolating values over
a uniform structured grid using scattered data interpolation techniques
or by connecting the points to form a mesh using tetrahedrization tech-
niques.

Scattered data interpolation has been a research topic for several
decades. A large number of scattered data interpolation techniques
are available today. Lohda and Franke [25] have broadly classified
them in the following way: polynomial-based approaches or piece-
wise continuous polynomial parametric solutions; algebraic solutions;
radial basis function methods; Shepard’s methods and its variants; and
subdivision-based approaches.

The generation of tetrahedral meshes from point-based volume data
also has a long tradition. Du and Wang [14] give an overview over



various approaches. Widely accepted are the results given by Delau-
nay tetrahedrization [13], whose implementation is also included into
the Computational Geometry Algorithms Library (CGAL) [10]. More
recent approaches try to improve existing Delaunay tetrahedrization
algorithms with respect to robustness, quality, and efficiency. Ro-
bustness against numerical errors during Delaunay insertion[33] or
for boundary recovery [38] is desired. Quality criteria with respect
to some design goals are often ensured by post-processing steps [28].
The incremental insertion [15, 8] method is one of the most efficient
implementations. Still, computational costs are high. Co et al. [11]
presented an approach for isosurface extraction from point-based vol-
ume data that uses local Delaunay triangulation, which keeps the num-
ber of points for each each Delaunay triangulation step low and thus
improves the overall performance.

In the astrophysics community, visualization of slices through the
volume, isosurface extraction, direct volume rendering techniques,
and particle rendering as color-mapped points are most commonly
used [31, 42]. A tool that provides such functionality (except for iso-
surfaces) is the freely available visualization tool SPLASH [34]. The
direct volume rendering is executed by a ray casting approach, where
integration along the rays is performed using a kernel-based interpo-
lation with the SPH kernel function W (x). The high adaptivity of the
SPH data forces one to use many rays and small step sizes along the
rays to not lose details in densely populated regions, which makes this
purely software-based direct volume rendering approach slow. Rota-
tion, zooming, and similar desired features cannot be achieved at in-
teractive rates. The visualization tool ParaView Meshless [34] handles
SPH data similarly. Navratil et al. [31] apply an inverse-distance-based
interpolation for resampling the data to a regular grid prior to isosur-
face extraction.

We are going to make use of the approach by Rosenthal and Lin-
sen [35]. They developed a direct visualization technique that oper-
ates on unstructured point-based volume data to extract isosurfaces.
The method is based on spatial domain partitioning using a kd-tree
and an indexing scheme for efficient neighbor search. Rosenthal and
Linsen showed that this direct isosurface extraction significantly out-
performed the local triangulation approach by Co et al. [11].

4 FEATURE-SPACE OPERATIONS

Since we are dealing with large amounts of particles for which we
compute a number of properties, our feature space is typically multi-
dimensional (in the range of up to 10 or maybe 20 dimensions) and
our data consist of many d-dimensional points. Multi-dimensional
features are given in the form of particles that have similar proper-
ties. In feature space this correlates to clusters of points. We provide
means to automatically detect clusters in the multi-dimensional feature
space. In order to visualize the clusters, they need to be projected into
a three-dimensional space, for which we are using 3D star coordinates.

The projection and the star coordinate layout are optimized to min-
imize the overlap of projected clusters. Using star coordinates, the
clusters are related to the input dimensions such that an interactive ex-
ploration system provides mechanisms to interactively explore clusters
and select the clusters of interest. In the following, we will describe
these feature space operations in more detail.

4.1 Automatic Multi-dimensional Cluster Detection

Given the multi-dimensional feature space with a large number of d-
dimensional points lying in that feature space, each point corresponds
to one sample of the volumetric data field and each dimension rep-
resents one data channel (typically one scalar value) stored at that
sample. Samples are the positions of the particles, where, in a pre-
processing step, we add the contributions of all particles to that sample
using Equation 1 to obtain the actual function values at the positions.
In order to understand the distribution of the points in feature space,
we propose to compute a density function and to determine the number
of clusters as well as the high density region of each cluster.

Given a multivariate density function f (x) in d dimensions, modes
of f (x) are positions where f (x) has local maxima. Thus, a mode
of a given distribution is more dense than its surrounding area. We

want to find the attraction regions of modes. To do so, we choose
various values for constants λ (0 < λ < supx f (x)) and consider re-
gions of the particle space where values of f (x) are greater than or
equal to λ . The λ -level set of the density function f (x) denotes a set
S( f ,λ ) = {x ∈ R

d : f (x) ≥ λ} . The set S( f ,λ ) consists of a num-
ber q of connected components Si( f ,λ ) that are pairwise disjoint. The
subsets Si( f ,λ ) are called λ -density clusters (λ -clusters for short). A
cluster can contain one or more modes of the respective density func-
tion.

Let the domain of the data set be given in the form of a d-
dimensional hypercube, i. e., a d-dimensional bounding box. To derive
the density function, we spatially subdivide the domain of the data set
into cells of equal shape and size. Thus, the spatial subdivision pro-
vides a binning into d-dimensional cells. For each cell we count the
number of points lying inside. The multivariate density function f (x)
is given by the number of points per cell divided by the cell’s area and
the overall number of data points. As the area is equal for all cells,
the density of each cell is proportional to the number of data points
lying inside the cell. The cell should be small enough such that local
changes of the density function can be detected but also large enough
to contain a large number of points such that averaging among points
is effective. Because of the curse of dimensionality, there will be many
empty cells. We do not need to store empty cells such that the amount
of cells we are storing and dealing with is (significantly) smaller than
the number of the d-dimensional points.

The λ -clusters can be computed by detecting regions of connected
cells with densities larger than λ . As we identify density with point
counts, the densities are integer values. Hence, we start by computing
density clusters for λ = 1. Subsequently, we process each detected
λ -cluster individually by iteratively removing those cells with mini-
mum density, where the minimum density increases in steps of 1. If
this process causes a cluster to fall into two subclusters, the subclus-
ters represent higher-density clusters within the original cluster. If a
cluster does not fall into subclusters during the process, it is a mode
cluster. This process generates a hierarchical structure, which is sum-
marized by the high density cluster tree (short: cluster tree). The root
of the cluster tree represents all points. Figure 1(a) shows a cluster tree
with 4 mode clusters represented by the tree’s leaves. Cluster tree vi-
sualization provides a method to understand the distribution of data by
displaying the attraction regions of modes of the multivariate density
function. Each cluster contains at least one mode.

4.2 Projecting Clusters into 3D Star Coordinates
Having computed the d-dimensional high density clusters, we need to
project them into a three-dimensional space for visualization purposes.
In order to visualize the high density clusters in a way that allows clus-
ters to be correlated with the d dimensions, we need to use a coordinate
system that incorporates all d dimensions. Such a coordinate system
can be obtained by using star coordinates.

When projecting the d-dimensional high density clusters into a
three-dimensional star coordinate representation, clusters should re-
main clusters. Thus, points that are close to each other in the d-
dimensional feature space should not be further apart after projection
into the three-dimensional space.

Let O be the origin of the 3D star coordinate system and (a1, . . . ,ad)
be a sequence of d three-dimensional vectors representing the axes.
The mapping of a d-dimensional data point x = (x1, . . . ,xd) to a three-
dimensional data point Π(x) is determined by the average sum of vec-
tors ak of the 3D star coordinate system multiplied with its attributes
xk for k = 1, . . . ,d, i.e.

Π(x) = O+
1
d

d

∑
k=1

xkak. (2)

Since it can be shown that

||Π(x)−Π(y)||1 ≤ ||x− y||1
for any d-dimensional points x and y, the distance of the images of
two d-dimensional points is lower than or equal to the distance of



(a) (b) (c)

Fig. 1. (a) Cluster tree of density visualization with four modes shown as leaves of the tree. (b,c) Visualization of four-dimensional data set: (b)
Nested density cluster visualization based on cluster tree using 3D star coordinates. (c) Right-most cluster in (b) is selected and its homogeneity is
evaluated using parallel coordinates. In both pictures the relation between the selected cluster with the dimension can be observed.

the points with respect to the L1-norm. Therefore, two points in the
multi-dimensional space are projected to 3D star coordinates preserv-
ing the similarity properties of clusters (at least with respect to the
L1-norm). In other words, the mapping of d-dimensional data to a
three-dimensional space determined by Equation (2) does not break
clusters.

The second property that our projection from multi-dimensional
feature space into three-dimensional star coordinate systems should
fulfill is that separate clusters should not be projected into the same
region. The projection into star coordinates may cause severe clutter-
ing of clusters when not carefully choosing the axes (a1, . . . ,ad). To
alleviate the problem of overlapping clusters we introduce a method
which chooses a ”good” coordinate system. Assume that a hierarchy
of high density clusters have q mode clusters, which do not contain any
higher level densities. Let mi be the barycenter of the points within the
ith cluster, i = 1, . . . ,q. We want to choose a projection that maintains
best the distances between clusters. Let {v1,v2,v3} be an orthonormal
basis of the candidate three-dimensional space of projections. The de-
sired choice of a 3D star coordinate layout is to maximize the distance
of the q projected barycenters VT mi with V = [v1,v2,v3]T , i.e. to max-
imize the objective function

∑
i< j

||VT mi −VT mj||2 = trace(VT SV )

with

S = ∑
i< j

(mi −mj)(mi −mj)T .

Thus, the three vectors v1,v2,v3 are the three unit eigenvectors corre-
sponding to the three largest eigenvalues of matrix S. This step is a
principal component analysis (PCA) applied to the barycenters of the
clusters. As a result, we choose the d three-dimensional axes of the
3D star coordinate system as ai = (v1i,v2i,v3i), i = 1, . . . ,d.

Figure 2(a) shows the distribution of points after projection for an
example using synthetic data with d = 20. The automatic cluster com-
putation extracted eight high density clusters indicated by the colors.
The remaining points (colored bluish) represent noise. The eight clus-
ters can clearly be identified as clusters, as they did not break apart
or spread during projection. Moreover, clusters can clearly be distin-
guished not only by color but also by position, as they remained clearly
separated during projection and do not overlap.

After having computed the projected clusters, we can display them
using star coordinates by rendering a point primitive for each projected
data point as shown in Figure 2(a). A less cluttered and more beautiful
display would render the boundary of the cluster.

4.3 Nested Cluster Visualization

Considering the cluster that is described by the set of points {pi =
(xi,yi,zi) : i = 1, . . . ,m} after being projected into the 3D space. In
order to compute the boundary of this group of points,we need to have
a continuous representation of the group. Therefore, we consider the

function fh(p) =
m

∑
i=1

K(
p− pi

h
), p ∈ R

3, where K is a kernel func-

tion and h is the bandwidth. Then, we render the boundary set of
the points by using the marching cubes algorithm [26] to extract the
boundary surface of the set S(h,c) = {p ∈ R

3 : fh(p)≥ c}, where c is
an isovalue. We choose parameter h and c to guarantee that S(h,c) is
connected and has a volume of minimum extension. The kernel func-
tion should be sufficiently smooth and have a small compact support.
For example, we can choose K(p) = (1− ||p||2)2 for ||p|| ≤ 1 and
K(p) = 0 otherwise and the bandwidth h to be equal to the longest
length of the minimum spanning tree of these m points. In Figure 2(b)
we show the visualization of the clusters in Figure 2(a) by rendering
such boundary surfaces, where it can be shown that for the chosen
kernel isovalue c = 9

16 is appropriate.
In order to visualize all clusters of the cluster tree, we render the sur-

faces in a semi-transparent fashion. The resulting visualization shows
sequences of nested surfaces, where the inner surfaces represent higher
density levels. Figure 1(b) shows the nested density cluster visualiza-
tion with respect to the cluster tree in Figure 1(a). The cluster tree has
been computed by interactively choosing appropriate λ -values.

Generating all clusters and displaying them in star coordinates al-
lows for further analysis of the detected clusters. The simplest inter-
action method is to select individual clusters by just clicking at the
boundary surface. When a cluster is selected, intra-cluster variability
is visualized using parallel coordinates, see Figure 1(b) and (c).

5 OBJECT-SPACE OPERATIONS

After having detected multi-dimensional features of interest in the
form of density clusters in feature space, we want to extract their
boundary in volumetric object space. To do so, we need to map inside-
outside properties to the particles in object space. Given the proper-
ties at the particle positions, we define a continuous volumetric scalar
field, the zero-level set of which represents the features boundary sur-
face. Afterwards, we extract the boundary surface in the form of a
point-cloud representation using isosurface extraction. The surface in
point cloud representation is being rendered using point-based render-
ing techniques.

5.1 Deriving a Continuous Inside-outside Scalar Field

The membership to a selected cluster imposes a binary decision onto
the particles. Hence, we can assign value 1 to all particles belonging



(a) (b)

Fig. 2. (a) Visualization of feature space clusters: Extraction of eight clusters in 20-dimensional domain and projection into 3D star coordinate space
while maintaining cluster property and avoiding overlap. (b) Density cluster visualization by rendering boundary surfaces.

to the cluster and value −1 to all the others. Now, we would like to ex-
tract an isosurface with respect to these assigned values using isovalue
0 following the ideas from Rosenthal and Linsen [35]. Such a direct
isosurface extraction from unstructured point-based data requires the
derivation of a continuous scalar field encoding inside-outside deci-
sions.

We use the SPH kernel to generate the scalar field. To each particle
we apply the SPH kernel according to Equation 1, where the function
value fb assigned to particle b is 1 for particles inside the cluster and
−1 otherwise. We neglect masses and densities and, instead, apply a
normalization of the weights. This defines a smoothly varying function
value, where the smoothing lengths h taken from the SPH simulation
ensures that the sign of the values at the particle positions themselves
do not change. We compute the values at the particle positions and
proceed with the direct isosurface extraction method described below.

5.2 Direct Isosurface Extraction

Let f : R
3 → R be a trivariate scalar function, whose values are given

for a large, finite set of samples (xi, f (xi)). The sample positions xi ∈
R

3 are not arranged in a structured way, nor is any connectivity or
neighborhood information known for the sample locations. Our goal
is to extract an isosurface f (x) = viso with respect to any real isovalue
viso out of the range of function f .

Isosurface extraction over discrete structures is typically performed
in two steps. First, a number of points pk ∈ R

3 on the isosurface are
computed, i. e. f (pk) = viso. For this purpose, an interpolation scheme
is applied to the function values f (xi) in order to locally reconstruct a
continuous scalar field between the given discrete sample positions xi.
We refer to the points pk on the isosurface as isopoints.

In a second step, some kind of neighborhood information for the
isopoints is generated, which is used to render the isosurface. When
the samples are arranged on a structured grid, the neighborhood in-
formation can be retrieved from the structure of the grid. Typically,
polygonal meshes are generated and rendered.

Our idea for isopoint computation from scattered volume data is
based on linear interpolation between pairs of samples with close po-
sitions xi and x j . The inspiration for this approach is given by isopoint
computation using the marching tetrahedra algorithm after partitioning
the domain via Delaunay tetrahedrization. The analogy is illustrated
in Figure 3 for the 2D case.

We want to adopt this isopoint computation method for our pur-
poses while avoiding the computation of the Delaunay tetrahedriza-
tion. Thus, we need to estimate the natural neighbors for each sample
position xi. Since the exact natural neighbors can only be determined
via the expensive Voronoi diagram computation, we approximate its
result using a spatial decomposition [35]. Note that replacing the nat-
ural neighbors by the nearest neighbors would fail in case of varying
density distributions of the samples. The kd-tree data structure [6]

x i

x

x

x

j

k

l

contour

1−ring

Delaunay
triangulation

Fig. 3. Isopoint computation for scattered data via Delaunay triangula-
tion and linear interpolation along Delaunay edges. For sample position
xi the incident edges to sample locations x j, xk, and xl intersect the
contour.

is known to be a data structure with well-balanced trade-off between
flexibility and efficiency. Operations on a kd-tree are fast, yet it is
robust against varying density distribution and clustering of sample
positions.

To perform a fast exploration of the kd-tree, we introduce an index-
ing scheme that, beside saving storage space, allows us to determine
neighbors using bitwise operations on the index. We determine a small
number of potential candidates for our neighbors based on the neigh-
borhoods in the kd-tree and reject some of them using an angle crite-
rion. Exploiting this neighborhood information, we select those pairs
of neighbors that are separated by the isosurface. We compute the iso-
point by linearly interpolating between the two samples. More details
on this fast direct isosurface extraction method is given by Rosenthal
and Linsen [35].

The result of the isopoint computation is an isosurface in point-
cloud representation, i.e., it is represented by a set of points lying on
the surface, see Figure 4(b). In a final step, we render the isosurface
using point-based rendering techniques, see Figure 4(c).

5.3 Splat-based Raytracing

For point-based rendering of the extracted surfaces we apply a raytrac-
ing approach to splats, which are computed from the surface points.
We follow the approach by Linsen et al. [24].

Let P be a point cloud representing a surface and consisting of n
points p1, . . . ,pn ∈ R

3. We generate m splats S1, . . . ,Sm that cover the
entire surface represented by point cloud P. For each of these splats
we are computing its radius ri ∈ R, i = 1, . . . ,m, and a normal field
ni(u,v), i = 1, . . . ,m, where (u,v) ∈ [−1,1]× [−1,1] with u2 + v2 ≤ 1
describes a local parameterization of the splat.
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Fig. 4. (a) Particle distribution of SPH simulation representing point-based volume data. (b) Isopoints extracted from the point-based volume data
form a point-based surface representation. (c) Point-based surface rendering.

In order to generate a smooth-looking visualization of a surface
with a piece-wise constant representation, we need to smoothly (e. g.
linearly) interpolate the normals over the surface before locally apply-
ing the light and shading model. Since we do not have connectivity
information for our splats, we cannot interpolate between the normals
of neighboring splats. Instead, we need to generate a linearly changing
normal field ni(u,v) within each splat, cf. [9].

The raytracing algorithm is carried out in a traditional way [5, 47,
43] using a recursive procedure and is based on ray-splat intersection.
The splat-ray intersection process is sped up using spatial partitioning,
for example by octrees, and a sequence of nested checks with no false
negatives and few false positives. The surface normal n at an intersec-
tion point is computed by a weighted average of the normals ni at the
respective locally parameterized positions (ui,vi) of the splats’ inter-
section points. This weighted averaging leads to continuously varying
normals on the surface.

6 RESULTS AND DISCUSSION

The main data for this project come from simulations of the disruption
of white dwarf stars by the tidal forces of a black hole. The disruption
of the white dwarf outside the event horizon of the black hole is only
possible for black holes of moderate masses (< 105 M�), otherwise
the white dwarf is swallowed as a whole before disruption. It is ex-
actly this property that offers the unique possibility to probe the exis-
tence of the much-debated, but yet undiscovered class of intermediate-
mass black holes (100 < M < 105 M�) by predicting the signatures
(gravitational waves, electromagnetic display in the optical and X-ray
waveband and nucleosynthetic yields) that this type of tidal disruption
would have. These predictions will soon become testable by new ex-
periments such as LISA [12] and LSST [21]. The corresponding cal-
culations are typical examples of astrophysical multi-scale (the time
scales of different physical processes vary by more than 10 orders of
magnitude) and multi-physics (gravity, hydrodynamics, nuclear reac-
tions) simulations.

The simulations are typically performed with 500,000 to 5,000,000
SPH particles. For each particle a nuclear reaction network consisting
of seven (quasi-)nuclei [18] is implicitly integrated along the hydro-
dynamical flow to correctly account for the feedback of the nuclear
energy generation onto the gas dynamics[37]. Therefore, for each par-
ticle the information of the mass fraction of seven chemical elements
(or groups of elements) needs to stored: Helium, Carbon, Oxygen,
Neon, Magnesium, Silicon, and Iron.

For feature space exploration we consider the seven-dimensional
feature space with about 500,000 points and determine the density
clusters. We divide each dimension of data space into N = 10 steps.
We applied the automatic clustering to time slice t = 150.93s after sim-
ulation start when the disrupted white dwarf is stretched and first ma-
terial is being accreted onto the black hole. The cluster analysis using
3D star coordinates reveals mainly three cluster modes, see Figure 5
(left). The clusters are projected into optimized 3D star coordinates
maintaining their structure and avoiding overlap. From the total of
502,218 particles, we obtain a mode cluster with 105,413 particles and
another cluster with 364,930 particles, which includes two mode clus-
ters with 260,604 and 34,314 particles, respectively. Particles that do
not belong to any cluster, i.e., isolated particles, are regarded as noise.

The clusters correspond to Helium (red), Carbon (green), and Silicon
(black), which are the dominant elements of the disrupted remnant.

The initial 0.2 M� white dwarf was made entirely of Helium and so
the remaining Helium after the disruption (49.3%) is mainly the un-
burnt remaining nuclear fuel from the regions that were never heated
strongly enough to undergo nuclear burning. This material forms an
outer mantle around the processed core of the debris, a moderate He-
lium fraction (∼ 0.2) from incomplete nuclear burning is still present
in the debris core. Inside this Helium shell there is a very thin shell
made of material with a Carbon mass fraction in excess of 0.3, the to-
tal carbon mass being 4.1% of the initial white dwarf mass. The core
of the debris which was always at the highest densities and which was
heated to highest temperatures (T > 109 K) is dominated by freshly
produced Silicon (mass fraction ≈ 0.8, 46.4% of the initial stellar
mass). These physical results are consistent with and supported by
the mode analysis in the star coordinates: the dominant cluster is
highly dependent on Helium, the second most important mode clus-
ter is highly dependent on Silicon, and the third mode cluster (Car-
bon) lies between them. The last two clusters are more closely related,
which is indicated by the lower density cluster that includes them. The
physical reason for this observation is that both of the latter elements
have been produced in the regions of the star that have undergone nu-
clear processing, while the Helium is mainly from cool and nuclearly
unprocessed surface layers of the white dwarf.

Figure 5 (right) shows an earlier time slice t = 13.7s, which is
at the end of the nuclear burning phase. During this stage a slightly
larger Oxygen fraction existed which was subsequently consumed in
the nuclear reactions leading to the build-up of the Silicon core.

Having explored the distribution of the clusters in feature space, one
is interested in seeing which spatial areas correlate with the clusters.
Figures 6(a)-(b) and Figures 6(e)-(f) show the particle distribution in
object space for time slices 150.93s and 13.7s, respectively. The colors
encode the three mode clusters we have detected: The green particles
belong to the “Silicon cluster”, the blue particles belong to the “He-
lium cluster”, and the red particles belong to the intermediate cluster.
The distribution gives the impression that Silicon is highly condensed
in the core and is surrounded by a highly condensed Helium region.
This assumption gets affirmed when looking into the boundary sur-
faces that are extracted from the data. Figures 6(c) and (g) show the
Silicon cluster at time steps 150.93s and 13.7s, respectively, and Fig-
ures 6(d) and (h) show the Helium cluster at time steps 150.93s and
13.7s, respectively. The renderings are obtained using the splat-based
raytracing approach. We observe that the Helium cluster boundary sur-
face is not closed, which causes problems for a splat-based rendering,
as boundaries exhibit rendering artifacts.

A large set of calculations shows the nuclear energy release trig-
gered by the tidal compression can lead to thermonuclear explosions
of white dwarfs of the full mass range between 0.2 M� and the Chan-
drasekhar mass, provided that the white dwarf penetrates deep enough
into the tidal radius of the black hole. Such thermonuclear explosions
have a very different signature from standard type Ia Supernovae. If
these events do exist, future supernova surveys such as LSST should
detect them. An underluminous thermonuclear explosion followed by
an X-ray flare of a few months length would be a compelling testimony
for the existence of intermediate mass black holes.



Fig. 5. Seven-dimensional feature space exploration of a multi-field smoothed particle hydrodynamics simulations using a visualization of nested
clusters in 3D optimized star coordinates. Left: time slice t = 150.93s. Right: time slice t = 13.7s.

In terms of computation times, the clustering step is the most in-
tense one. For the given examples, it took about 330s. The subsequent
projection and surface extraction in feature space took about 1s. The
rendering is interactive. The generation of a smooth inside-outside
field was not optimized and took about 16s, whereas the actual isosur-
face extraction took only 3.5s. The splat-based raytracing took about
50s when generating a high-resolution output of 1200× 1200 pixels.
The memory consumption is linear both in the number of particles and
in the number of dimensions. This is achieved by performing one-
dimensional binning in feature space and removing empty cells before
continuing with binning in the subsequent dimension.

7 CONCLUSION

We have presented an approach to visualize multi-field smoothed par-
ticle hydrodynamics data. It consists of feature space and correspond-
ing object space operations. In feature space, we compute a density
function, which we use for automatic detection of hierarchies of high
density clusters. These clusters are projected into a 3D star coordinate
space. The projection is defined such that it optimizes cluster distribu-
tion in terms of overlap, compactness, and shape. A nested level set
visualization for the high density area with respect to different density
levels allows for an interactive exploration of the hierarchical clus-
ters and to correlate the clusters to the original dimensions. The de-
tected clusters can also be displayed in volumetric object space. Their
boundary surfaces in object space are extracted using direct isosur-
face extraction from unstructured point-based volume data, where the
underlying scalar field is obtained by applying the SPH kernel to the
binary inside-outside encoding of particles with respect to the clus-
ter of interest. The extracted surface in the form of a point cloud is
rendered using a splat-based raytracing technique.
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