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ABSTRACT
We propose an approximate approach for studying the relativistic regime of stellar tidal
disruptions by rotating massive black holes. It combines an exact relativistic description of
the hydrodynamical evolution of a test fluid in a fixed curved space–time with a Newtonian
treatment of the fluid’s self-gravity. Explicit expressions for the equations of motion are
derived for Kerr space–time using two different coordinate systems. We implement the new
methodology within an existing Newtonian smoothed particle hydrodynamics code and show
that including the additional physics involves very little extra computational cost. We carefully
explore the validity of the novel approach by first testing its ability to recover geodesic motion,
and then by comparing the outcome of tidal disruption simulations against previous relativistic
studies. We further compare simulations in Boyer–Lindquist and Kerr–Schild coordinates and
conclude that our approach allows accurate simulation even of tidal disruption events where
the star penetrates deeply inside the tidal radius of a rotating black hole. Finally, we use the
new method to study the effect of the black hole spin on the morphology and fallback rate of
the debris streams resulting from tidal disruptions, finding that while the spin has little effect
on the fallback rate, it does imprint heavily on the stream morphology, and can even be a
determining factor in the survival or disruption of the star itself. Our methodology is discussed
in detail as a reference for future astrophysical applications.

Key words: accretion, accretion discs – black hole physics – relativistic processes – methods:
numerical – galaxies: nuclei.

1 IN T RO D U C T I O N

Gravity is the power source behind the most luminous phenomena
in the Universe. For example, the accretion of gas on to stellar-mass
black holes (BHs) is thought to power the majority of gamma-ray
bursts (e.g. Piran 2005; Meszaros 2006; Lee & Ramirez-Ruiz 2007;
Nakar 2007; Gehrels, Ramirez-Ruiz & Fox 2009), while gas being
swallowed by supermassive BHs provides the power supply for
active galactic nuclei (e.g. Rees 1978; Sanders et al. 1988). The
vast majority of supermassive BHs, however, go through extended
‘dormant’ periods (Frank & Rees 1976; Lidskii & Ozernoi 1979)
where they are starved of gas to accrete, but during which they
can occasionally come back to life when a star passes by closely
enough to be tidally disrupted (Rees 1988). Such a tidal disruption
event (TDE) delivers a substantial fraction of stellar mass to the
BH, and therefore provides a huge energy reservoir of ∼1053 erg
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(Macc/0.1 M�) that can potentially be tapped to power a flare of
electromagnetic radiation.

Several TDEs have been observed, mostly in X-rays (Bade,
Komossa & Dahlem 1996; Komossa & Greiner 1999; Gezari et al.
2003), ultraviolet (UV; Gezari et al. 2006, 2008, 2009) and some
in optical archival searches (van Velzen et al. 2011) and transient
searches (Cenko et al. 2012a; Gezari et al. 2012, 2016; Holoien
et al. 2014, 2016). Recently, collimated jets from two TDE can-
didates have been discovered by the Swift satellite (Bloom 2011;
Levan et al. 2011; Zauderer et al. 2011; Cenko et al. 2012b). These
observations have sparked a flurry of TDE studies (see e.g. De
Colle et al. 2012; MacLeod, Guillochon & Ramirez-Ruiz 2012;
Guillochon & Ramirez-Ruiz 2013, 2015; Manukian et al. 2013;
Guillochon, Manukian & Ramirez-Ruiz 2014; Gafton et al. 2015;
Bonnerot et al. 2016; Hayasaki, Stone & Loeb 2016).

TDEs may also serve as probes for revealing the presence of
intermediate-mass BHs. For example, white dwarf stars (WDs)
can only be disrupted by Schwarzschild BHs with masses be-
low ∼2 × 105 M�, whereas for larger BH masses the WD
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Figure 1. Illustration of the geometric complexity of a TDE. The stellar matter density of a 1 M� star is shown at various times (as marked on the plot) after
its partial disruption by a non-rotating 106 M� BH (impact parameter β = 0.8, see text). The trajectory of the stellar CM is shown as a dashed grey line. After
the first passage, the star has been elongated into a very narrow curved cylinder with lobes at both ends, and a stellar core in the centre. At this stage, the debris
is still receding from the BH; much later, the part ahead of the core will return back to the BH, while the trailing part is unbound. To illustrate the range of
scales involved, we also show (lower left-hand corner) the tidal radius (black circle) and the BH’s gravitational radius (small yellow filled circle).

will fall through the horizon without being disrupted. For BHs
below this limit, the tidal compression in a deep enough en-
counter can trigger a significant release of thermonuclear energy
(Luminet & Pichon 1989), resulting in a peculiar, Type-Ia-like su-
pernova (Rosswog, Ramirez-Ruiz & Hix 2008a, 2009; MacLeod
et al. 2016). Furthermore, TDEs can also constrain BH parame-
ters such as the spin rate. A rapidly rotating BH can disrupt stars
that would otherwise be swallowed whole by a non-rotating BH,
with a difference in the threshold BH mass as large as a fac-
tor of 10 (see Fig. 2). Accurately capturing the relativistic ef-
fects due to a rotating BH becomes crucial for modelling events
such as ASASSN-15lh (Dong et al. 2016) as recently discussed by
Leloudas et al. (2016).

While some aspects of a TDE can be described analytically
to a reasonable accuracy (Carter & Luminet 1985; Luminet &
Carter 1986; Rees 1988; Stone, Sari & Loeb 2013), the disrup-
tion itself is a highly non-linear interaction between (relativistic)
gravity (Kochanek 1994; Haas et al. 2012; Kesden 2012; Stone
& Loeb 2012; Cheng & Evans 2013; Dai, Escala & Coppi 2013;
Hayasaki, Stone & Loeb 2013; Gafton et al. 2015; Guillochon &
Ramirez-Ruiz 2015; Shiokawa et al. 2015), gas dynamics (Evans
& Kochanek 1989; Ayal, Livio & Piran 2000; Lodato, King &
Pringle 2009; Guillochon & Ramirez-Ruiz 2013), radiation (Guil-
lochon et al. 2009; Sa̧dowski & Narayan 2016), possibly magnetic
fields (Sa̧dowski et al. 2016) and, in extreme cases, tidally trig-
gered thermonuclear reactions (Luminet & Pichon 1989; Rosswog
et al. 2008a, 2009; MacLeod et al. 2016). Therefore, the only way
to realistically study the disruption process itself is via numerical
simulations.

Independently of the complexity of the physical processes, the
numerical simulation of a TDE poses a formidable challenge
in itself due to the debris geometry and the length- and time-
scales involved. To fix ideas, consider the situation sketched in
Fig. 1, where a 1 M� solar-type star has just passed by a non-
rotating M = 106 M� BH. In broad terms, the star is expected
to be tidally disrupted if its periapsis distance rp lies within the

tidal radius,

rt ≡ R�

(
M

M�

)1/3

� 48 rg

(
R�

R�

) (
M�

M�

)−1/3 (
M

106 M�

)−2/3

, (1)

where rg ≡ GM/c2 is the gravitational radius of the BH.1 The tidal
radius is marked in the figure as a black, open circle; the BH’s
gravitational radius is marked with the small yellow filled circle. In
this example, the star has passed the BH with an impact parameter
of β ≡ rt/rp = 0.8.

In order to be able to use a spherically symmetric stellar equilib-
rium model as the initial condition, one must start such a simulation
with an initial separation between the star and the BH greater than

r0 ∼ 5 rt � 120 rg

(
R�

R�

) (
M�

M�

)−1/3 (
M

106 M�

)−2/3

, (2)

and in this way assure that the tidal acceleration (atid ∼ GMR�/r
3
0 )

is less than 1 per cent of the self-gravity and pressure forces inside
the star (both of order asg ∼ GM�/R

2
� as follows from consideration

of hydrostatic equilibrium). It is easy to see that the initial ratio of the
accelerations atid/asg at r0 is approximately equal to (r0/rt)−3, hence
�1 per cent for a ratio of 5. Under these conditions, the initial stellar
gas distribution only covers a small fraction of the computational
volume,

R�
3

r0
3

� 10−8

(
M�

M�

) (
106 M�

M

)
. (3)

While this does not pose a major challenge for a Lagrangian
method like smoothed particle hydrodynamics (SPH; Monaghan

1 It is important to note here that rt as defined in equation (1) provides only
a rough Newtonian estimate for the actual radius at which disruption takes
place. This definition completely ignores relativistic effects (including BH
rotation) that we will be discussing extensively in the rest of this paper.
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2005; Rosswog 2009, 2015; Springel 2010), it is a serious hurdle for
Eulerian methods, where vacuum is usually treated as a low-density
background gas that must be evolved in the simulation. Therefore,
such simulations are often performed in the reference frame of
the stellar centre of mass (CM), with the BH being treated as a
time-varying external force (Guillochon et al. 2009; Guillochon &
Ramirez-Ruiz 2013). This allows, on the one hand, reduction of
the computational volume and, on the other, avoidance of excessive
numerical advection error due to high-velocity motion with respect
to the computational grid.

An additional challenge comes from the fact that the relevant
signal velocity that enters the Courant–Friedrichs–Lewy (CFL) sta-
bility criterion (Courant, Friedrichs & Lewy 1928) in a relativistic
hydrodynamics simulation is the speed of light, so that the numerical
time step is restricted to

�t < 0.02 s

(
�x

R�/100

)
, (4)

where �x symbolizes the smallest length-scale that needs to be
resolved. This restriction may be relaxed after a disruption has oc-
curred, but if the encounter is only weak and a stellar core survives,
as in the example of Fig. 1, similar time step restrictions still apply
after the encounter. Therefore, a full simulation – starting from sev-
eral tidal radii and following the spreading of the stellar debris to
large distances, the return of a fraction of the debris to the BH and
the subsequent circularization and formation of an accretion disc
– is prohibitively expensive for a fully relativistic treatment. Fixed
metric approaches, on the other hand, can obviously only be applied
for phases where the self-gravity of the stellar debris can be safely
ignored, and not for a full beginning-to-end simulation.

For the numerical study of a TDE, this leaves the following
options:

(a) use an entirely Newtonian approach and restrict the focus
to encounters that can be treated as non-relativistic with a reason-
able accuracy (Guillochon & Ramirez-Ruiz 2013; Guillochon et al.
2014; Coughlin & Nixon 2015);

(b) use a Newtonian hydrodynamics scheme together with a
pseudo-Newtonian potential for approximately capturing some
relativistic effects (Rosswog et al. 2009; Hayasaki et al. 2013;
Tejeda & Rosswog 2013; Bonnerot et al. 2016);

(c) follow a post-Newtonian approach for mildly relativistic en-
counters (Ayal et al. 2000, 2001; Hayasaki et al. 2016);

(d) use a full numerical relativity approach by solving the
Einstein equations, and restrict the attention mainly to regions near
the BH (e.g. East 2014);

(e) use a combination of some of the above approaches, as was
recently done by Shiokawa et al. (2015) and Sa̧dowski et al. (2016).

Clearly, each of the above approaches has its own shortcom-
ings. Pseudo-Newtonian potentials, for instance, are usually tuned
to reproduce special properties for the motion around a BH, but can-
not reproduce all of the relevant relativistic effects simultaneously.
Moreover, these kinds of potential have mostly been developed for
non-rotating BHs (see e.g. Tejeda & Rosswog 2013, for a com-
parison of some of the most commonly used pseudo-Newtonian
potentials), and they have been less successful in modelling (the
more realistic) rotating BHs.

Post-Newtonian approaches, on the other hand, are computa-
tionally very demanding since they require the solution of several
Poisson equations (nine for the full approach of Ayal et al. 2001),
while being unnecessary far from the BH and inaccurate close to
it. In addition, the computational burden for solving the Poisson

equations seriously restricts the numerical resolution that can be
afforded for the hydrodynamics.

In this paper, we suggest a hybrid approach that combines an
exact relativistic treatment of the acceleration from a rotating BH
with a Newtonian treatment of the fluid’s self-gravity. We work
out explicitly the accelerations in both Boyer–Lindquist (BL) and
Kerr–Schild (KS) coordinates. The resulting equations are simple to
implement within Newtonian hydrodynamic codes, as we demon-
strate here using the Newtonian SPH code described in detail in
Rosswog et al. (2008b). Since the fluid’s contribution to the space–
time geometry is neglected, this approach is, of course, not entirely
self-consistent. Nevertheless, as we will show below, it is exact
far from the BH and reproduces known results to a high accuracy
even for very deep encounters, while only minimally increasing the
computational burden with respect to a Newtonian simulation.

Although this new tool has mostly been developed for the study
of TDEs, one can straightforwardly apply it in situations where self-
gravity only impacts on the fluid, while the space–time geometry
is, to a good approximation, only determined by the BH.

The paper is organized as follows. In Section 2 we discuss the
most salient relativistic effects that are relevant for the study of
TDEs. In Section 3, we present the methodology used in this work
for treating the exact relativistic evolution of a fluid in a curved
space–time coupled with an approximate treatment of the fluid’s
self-gravity. In Section 4, we present a number of tests designed
to compare our method with known analytic solutions as well as
with results of previous relativistic simulations. In Section 5 we
demonstrate the use of our methodology for studying TDEs in-
volving a rotating BH. A summary of our method and results
is given in Section 6. In the accompanying appendices, we have
collected explicit expressions for the fluid accelerations in Kerr
space–time together with a brief summary of particle motion in this
space–time.

2 R ELATI VI STI C EFFECTS R ELEVANT FO R
T D E S

In this section we summarize a number of length scales and rela-
tivistic effects that are relevant for TDEs, and discuss the regimes
in which the effects are significant.

2.1 Event horizon

This can be thought of as a one-way membrane that matter and
light can only cross going inwards. Since matter plunging into the
event horizon becomes causally disconnected from the rest of the
universe, the existence of an event horizon directly affects the overall
dynamics and energy budget in an accretion system. For a Kerr BH
with specific angular momentum a, the event horizon is located at2

reh = M +
√

M2 − a2. (5)

In what follows, the spin parameter a is taken to be positive when
referring to a BH corotating with the orbiting matter and negative
when it is counter-rotating.

2.2 Innermost stable circular orbit

This marks the transition radius within which stable circular mo-
tion is no longer possible. For a standard thin accretion disc,

2 Here and for the rest of this work we adopt geometric units, with G = c = 1.
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Figure 2. Parameter space for the tidal disruption of different types of stars.
The vertical axis shows the periapsis distance of the parabolic trajectory
along which a star approaches the central BH, whose mass M is shown on
the horizontal axis. The solid, coloured lines indicate the tidal radii rt for
different types of stars. For a given type of star, we can expect to have a
TDE only if the periapsis distance lies below the corresponding rt curve. The
black horizontal lines represent the minimum possible periapsis distance of
a parabolic trajectory, which corresponds to the radius of the marginally
bound circular orbit and is equal to 4 M for a non-rotating BH and to 1 M for
a maximally corotating BH. We also indicate the importance of relativistic
effects by the blue-shaded regions (see main text). From top to bottom,
the parameters chosen to represent each stellar type are: (M∗ = 4 M�,
R∗ = 18 R�), (M∗ = M�, R∗ = R�), (M∗ = 0.6 M�, R∗ = 0.015 R�)
and (M∗ = 1.4 M�, R∗ = 10 km).

this implies the existence of an inner edge from which the fluid
falls essentially freely into the BH. The radius of this orbit is
a function of the spin parameter of the BH. We will not write
here the well-known formula for it (see e.g. Frolov & Novikov
1998) since it is rather complicated and we will not be using it in
the following.

2.3 Marginally bound circular orbit

In general relativity there is a critical value for the angular momen-
tum of a test particle below which the resulting centrifugal repulsion
is not enough to prevent the trajectory from plunging into the BH’s
event horizon. This translates into a minimum periapsis distance that
a given trajectory can attain. In the case of marginally bound parti-
cles (i.e. particles with parabolic-like energies), the corresponding
radius is given by (Bardeen, Press & Teukolsky 1972)

rmb = 2M − a + 2
√

M(M − a). (6)

In the context of TDEs, the different ways in which this radius
and the tidal radius scale with the BH’s mass (rmb ∝ M and rt

∝ M1/3, respectively) imply that, for a given type of star, there
exists a maximum possible value of M above which the star will
be swallowed whole inside the BH horizon before being tidally
disrupted, see Fig. 2 below.

2.4 Periapsis precession

The relativistic trajectory of a bound particle around a BH does not
close on itself as in the Newtonian case. To first order, the particle’s
trajectory can be described as an elliptical orbit whose periapsis is
subject to a shift ∝M/rp per revolution. However, this shift becomes
arbitrarily large as rp → rmb. Compared to a Newtonian encounter,
this relativistic effect has a profound impact on deep TDEs, causing

the tidal stream to self-intersect at smaller radii, steeper angles and
with larger relative velocities. This leads to the formation of a strong
shock that efficiently dissipates kinetic energy, injects additional
turbulence into the returning stream, and can potentially speed up
the circularization of the debris and the formation of an accretion
disc (see e.g. Shiokawa et al. 2015; Bonnerot et al. 2016; Sa̧dowski
et al. 2016).

2.5 Orbital plane precession

Particles orbiting around a rotating BH are no longer constrained
to move within a single plane. As a first approximation for bound
orbits, the motion of a test particle can be described in terms of
a precessing orbital plane that oscillates between two extremes
with a frequency approximately equal to the Lense–Thirring pre-
cession rate ∝aM/r3

p . If, following a TDE, the cross-section of the
debris stream remains sufficiently thin, this additional precession
may prevent stream self-intersection for several orbits, which can
significantly delay the circularization of the debris (Guillochon &
Ramirez-Ruiz 2015). Independently of the precise details of the cir-
cularization process, it is expected that a TDE involving a rotating
BH will in general produce a geometrically thicker accretion disc
than one involving a non-rotating BH.

2.6 Binding energy of circular trajectories

Particles on circular trajectories around a BH are more tightly bound
to the central object than in the Newtonian case. For fluid moving
round in an accretion disc, this extra budget of potential energy
directly affects the total luminosity emitted from the accretion disc.

2.7 Enhanced tidal field

A deeper gravitational potential well implies a steeper potential
gradient and, therefore, an enhanced tidal field. This is reflected in,
for instance, stretching factors up to 25 times larger in the relativis-
tic description of a 106 M� non-rotating BH as compared to the
Newtonian case (see e.g. fig. A1 of Gafton et al. 2015).

2.8 Parameter space for TDEs

In Fig. 2 we have plotted the parameter space for TDEs in terms of
the BH mass M and the periapsis distance rp for different types of
star. For fixed BH mass and spin parameter, the lower limit for rp

is given by rmb as defined in equation (6). From this equation we
get a minimum distance of 4 M for a non-rotating BH (a = 0) and
of 1 M for a maximally rotating BH (a = M) when the star is in
corotation with the BH. If, instead, the BH is counter-rotating, this
distance becomes �5.8 M. The first two limits are indicated in Fig. 2
with thick horizontal lines. As rp → rmb, relativistic effects become
increasingly important. In broad terms, relativistic corrections to
quantities such as binding energy or periapsis shift are of the order
of a few per cent for 10 < rp < 100 M, and can exceed 10 per cent
for rp � 10 M. From the same figure we can see that, for instance,
a main-sequence star like the Sun can be disrupted by a central
BH of at most M ∼ 107.5 M� for a non-rotating BH and of M ∼
108.5 M� for a maximally rotating one. It can further be seen that
a TDE of a solar-type star takes place in the relativistic regime for
M � 105.5 M�.
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3 C O O R D I NAT E T I M E E VO L U T I O N O F A
PERFECT FLUID

3.1 Relativistic hydrodynamics equations

Let us consider a perfect fluid evolving on a given curved space–
time described by the metric tensor gμν . The state of a fluid element
is characterized in terms of the rest mass density �, the pressure
P, the specific internal energy u and the specific entropy s. Note
that the rest mass density � is related to the baryon number density
n by � = m0 n, where m0 is the average baryonic rest mass of
the fluid. All of these thermodynamical quantities are measured
in the reference frame comoving with the fluid element. Within
the perfect fluid approximation, the specific entropy is a conserved
quantity along the worldline of any given fluid element. The rest
of the thermodynamic quantities are related through an equation of
state. The motion of the fluid element itself is described by the four-
velocity vector Uμ defined as the vector tangent to its worldline and
normalized as3

Uμ Uμ = gμνU
μ Uν = −1. (7)

The contravariant components of the four-velocity are given as
Uμ = dxμ/dτ , where τ is the proper time of the fluid element
and (xμ) = (t, xi) is a particular 3+1 splitting of the coordinate
system where t is the coordinate time and xi represents the spatial
coordinates of the fluid element.

The stress–energy tensor of the perfect fluid is expressed in terms
of the above defined quantities as

T μν = � ω UμUν + P gμν, (8)

where ω = 1 + u + P/� is the relativistic specific enthalpy. The
fluid evolution equations follow from the conservation of baryon
number

(n Uμ);μ = 0, (9)

and the local conservation of energy–momentum

(T μν);μ = 0, (10)

where a semicolon stands for covariant differentiation. These five
equations (one in equation 9 and four additional ones from the four
components of equation 10), together with the fluid’s equation of
state, suffice for calculating the time evolution of a fluid described
with the six variables (Uμ, �, u).

By substituting equation (8) into equation (10), employing the
continuity equation (9), together with the first law of thermodynam-
ics for a perfect fluid expressed in terms of the specific enthalpy as
dω = dP/�, we obtain the relativistic Euler equation

dUν

dτ
= − 1

� ω

∂P

∂xμ
(UμUν + gμν) − 	ν

λμUλUμ, (11)

where 	ν
λμ denote the Christoffel symbols.

In the present work we want to describe the evolution of the
fluid in terms of the global time coordinate t rather than the proper
time τ that runs at different rates for fluid elements at different
locations. For doing this, it is convenient to recast all of the proper

3 Here and in what follows we adopt Einstein’s convention of summation
over repeated indices, with Greek indices denoting space–time components
and Latin indices denoting only spatial components.

time derivatives in equations (9) and (11) as derivatives with respect
to the coordinate time t using the identity

d

dt
= 1

	

d

dτ
= 1

	
Uμ ∂

∂xμ
, (12)

where

	 ≡ dt

dτ
= U 0 (13)

is a generalized Lorentz factor.4 Equation (7) can be used to rewrite
equation (13) as

	 = (−gμν ẋμ ẋν
)−1/2

, (14)

where an overdot stands for the derivative with respect to the coor-
dinate time t and, clearly, (ẋμ) = (1, dxi/dt).

With the aid of equations (7), (12) and (14), we can use the
time component of equation (11) to rewrite its remaining spatial
components as

d2xi

dt2
= − (

giλ − ẋig0λ
) [

1

	2� ω

∂P

∂xλ

+
(

∂gμλ

∂xσ
− 1

2

∂gμσ

∂xλ

)
ẋμ ẋσ

]
. (15)

On the other hand, if we compute the inner product of equation (11)
with the four-velocity and use the expressions in equations (7), (12)
and (14) we get

du

dt
= P

�2

d�

dt
, (16)

which recovers again the first law of thermodynamics for a perfect
fluid. Finally, we can bring the expression for baryon number con-
servation, equation (9), into the form of an evolution equation by
applying equation (12):

dn

dt
= − n√−g 	

∂

∂xμ

(√−g 	 ẋμ
)
, (17)

where g is the determinant of the four-metric gμν .
Equations (15) and (16) are directly useful for our purposes since

they can be straightforwardly implemented within our Newtonian
SPH code. Equation (17), however, is somewhat problematic be-
cause of the explicit time derivative of the Lorentz factor 	 on the
right-hand side of the equation. Such time derivatives are known
to limit the stability of relativistic hydrodynamics schemes, see for
example Norman & Winkler (1986). We can avoid this difficulty
altogether by introducing the auxiliary density variable

N =
√−g

γ
	 n, (18)

where γ is the determinant of the three-metric γ ij = gij. Using this
new variable, equation (17) can be recast as

dN

dt
= −N ∇i ẋi − N√

γ

∂
√

γ

∂t
, (19)

where ∇i ẋi = 1/
√

γ ∂
(√

γ ẋi
)
/∂xi is the three-divergence as cal-

culated on a spatial hypersurface t = const. Equation (19) does not
involve time derivatives of the Lorentz factor 	. Furthermore, for

4 Note that this is a different quantity from the somewhat similar one (also
denoted by 	) used by Hernandez & Misner (1966) and May & White
(1966) in considerations of spherical collapse and subsequently used by
other authors following on from them.
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the stationary metrics that we are interested in here – such as the
Kerr one – the second term on the right-hand side of equation (19)
vanishes identically.

In the following we shall use the SPH method for solv-
ing the hydrodynamic equations. Similarly to mass conservation
in the Newtonian case, the SPH method allows one to either
integrate a continuity equation (for mass or baryon number) or
to enforce baryon conservation by simply keeping the mass/baryon
number carried by each SPH particle fixed in time while the fluid is
evolving. In this way, and in the special case of stationary metrics,
we can altogether bypass the need to solve equation (19). In order
to see this, note that for stationary metrics we can rewrite equation
(19) as

∂N

∂t
= −∇i(N ẋi), (20)

and then integrate equation (20) over any given spatial volume
element V . Doing so we obtain

d

dt
N = d

dt

∫
V

N
√

γ d3x = −
∫
V

∂
√

γ N ẋi

∂xi
d3x

= −
∮
S

(N ẋi)
√

γ dSi, (21)

where N is the total number of baryons in the volume V , S is
the two-dimensional surface delimiting V and

√
γ dSi is a differ-

ential area element normal to S. For the last step we have used
the divergence theorem. If we take now the volume element V in
equation (21) to coincide with the volume around a given SPH par-
ticle, we see that, by keeping a constant number of baryons within
each individual SPH particle, both sides of equation (21) are equal
to zero and the continuity condition in equation (19) is thus auto-
matically fulfilled.

3.2 Self-gravity treatment

In many situations, the BH dominates the space–time, but the ef-
fects of self-gravity in the fluid cannot be entirely neglected. For
our purposes, we use a standard kernel-softened, Newtonian self-
gravitational acceleration asg and potential  calculated via a bi-
nary tree (Benz et al. 1990). In the spirit of the Newtonian Euler
equation, we introduce the force due to the fluid’s self-gravity into
the evolution equations by modifying equation (15) as

d2xi

dt2
= − (

giλ − ẋig0λ
) [

1

	2ω

(
1

�

∂P

∂xλ
+ ∂

∂xλ

)

+
(

∂gμλ

∂xσ
− 1

2

∂gμσ

∂xλ

)
ẋμ ẋσ

]
. (22)

Since the way in which we treat self-gravity depends on the
particular choice of spatial coordinates – and hence is at odds with
general relativity’s covariance principle – we test the validity of
our approximate approach by comparing the outcome of the same
simulation using two different coordinate systems (namely, BL and
KS coordinates; see Section 4.2 below). Explicit calculations of
all of the relevant terms in each coordinate system are given in
Appendices B and C.

It is worth noting in equation (22) that, since self-gravity and
pressure forces always enter the evolution equation together, hy-
drostatic equilibrium will be guaranteed as long as the two forces
are comparable, and in the regime in which both are much larger
than the tidal forces due to the BH. The prefactor 1/	2 effectively
introduces a time dilation effect close to the BH (which is physical in

the chosen coordinate system, i.e. KS or BL), while the giλ − ẋig0λ

term introduces non-linearity in the equations (e.g. the x component
of the acceleration will depend on all derivatives ∂λP and ∂λ, not
just on ∂xP and ∂x).

The evolution equation (22) can be conveniently implemented
within an existing SPH code with essentially no additional over-
head in computational time with respect to a purely Newtonian
calculation. To check this conclusion, we performed statistical tim-
ing measurements of both the relativistic and the Newtonian ver-
sions of our code, using 2 × 105 and 106 SPH particles, with
both the serial (1 CPU core) and OpenMP (8 CPU cores) ver-
sions. On average, between 85 and 95 per cent of a time step is
spent on tree operations (tree build, neighbour search and Newto-
nian self-gravity calculations), while the rest of the time is mostly
spent computing hydrodynamical and BH accelerations. Since the
vast majority of the computational power is employed on parts
of the code that are identical in both the Newtonian and the rel-
ativistic versions, the overhead for computing the relativistic cor-
rections is between 0.5 and 2 per cent of a time step (depend-
ing on the number of particles and the number of CPU cores),
the vast majority (about 80 per cent) of which is spent evaluating
metric derivatives.

Relativistic simulations will also take longer because the
star spends more time close to periapsis as compared to the
Newtonian simulations (due to the gravitational time dilation), but
this is a physical effect that occurs in any relativistic simulation
regardless of the code used, and therefore we do not consider it as
an overhead of the method itself. Finally, we observed that during
the periapsis passage, when the time step criterion based on the ac-
celeration is more restrictive than the CFL criterion, the time steps
taken in the relativistic simulations by our adaptive time-stepping
scheme are, on average, smaller by a factor of �2 than those taken
in Newtonian simulations. It is difficult to quantify the resulting
computational overhead for an entire simulation, as the fraction of
time spent close to periapsis depends considerably on the orbital
parameters. Based on the simulations we ran for this paper, we es-
timate that this effect increases the computational cost by at most
�10 per cent.

4 VA L I DAT I O N

In this section we present several tests designed to explore the range
of applicability of our method. We shall do this by first testing the
ability of the new approach to reproduce exact geodesic motion of
test particles in both Schwarzschild and Kerr space–times. Next, we
compare the outcome of several TDE simulations against the results
of previous relativistic studies. Finally, we test the degree to which
our method abides by the covariance principle by comparing the
outcome of two simulations of the same TDE encounter performed
once in BL and once in KS coordinates.

All simulations presented in this paper were conducted with
a modified version of the Newtonian SPH code described in de-
tail in Rosswog et al. (2008b), where the Newtonian accelerations
due to the BH and the pressure forces were replaced by the rel-
ativistic expressions given in Appendices B and C. The initial
profile of the star was determined by solving the Lane–Emden
equations for a γ = 5/3 polytrope; the SPH particles (200 642 in
all cases) were distributed according to the resulting density pro-
file, then relaxed with damping into numerical equilibrium (see
Rosswog et al. 2009 for more details) and subsequently placed
at a distance of 5 rt from the BH, on a parabolic orbit computed
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according to the equations given in Appendix A2. Throughout the
simulation, the stellar fluid was evolved with a γ = 5/3 polytropic
equation of state. The BH accretion radius was placed at the event
horizon radius reh, see equation (5), with all of the particles that
entered this radius being removed at the next synchronization point
of our individual time step scheme. Owing to the large mass ratio
between the central BH and the star (106), the contribution of the ac-
creted particles to the mass and spin of the BH has been neglected,
i.e. the metric is taken to be stationary. We then assume a fixed
Kerr metric for a BH of mass M, specific angular momentum a and
dimensionless spin parameter

a∗ ≡ a

M
. (23)

We would like to stress at this point that in all of the numeri-
cal tests presented below we used the Euclidean distance for the
calculation of all interparticle separations. In an SPH code this dis-
tance is critical for building the tree itself (which is then used for
computing the hydrodynamic and self-gravity accelerations), and
then appears in all of the expressions that contain the SPH kernel
or its derivatives, such as those for gas density, momentum equa-
tion, energy equation, artificial viscosity terms, shock heating terms
and self-gravity acceleration. One could, in principle, also calculate
the interparticle separation via the proper spatial distance using the
spatial metric tensor γ ij (rather than the Euclidean, flat-space dis-
tance that we are using), but this would only be an extra layer of
complexity on top of an already approximate way of introducing
Newtonian gravity within a relativistic approach and is therefore
not considered.

The rationale behind our choice is that, since the BH mass is
being taken to dominate the space–time geometry, i.e. M � M∗,
the space–time will be very nearly flat across the scales where
self-gravity matters (e.g. the radius of a star). On the other hand,
on scales where the metric does significantly depart from flat
space–time (two fluid elements on different sides of the BH be-
ing the most extreme example), self-gravity will have absolutely no
relevant contribution.

A quantitative criterion for the previous argument can be stated
by requiring the radius of curvature R of the BH’s space–time
to be much larger than the length scales for both the self-gravity
and the hydrodynamic interactions (that we take to be the radius
of the star R∗ and the typical size for the SPH smoothing length
h, respectively). The space–time curvature around a BH is of the
order of κ = M/r3, from where it follows a radius of curvature
R ∝ 1/

√
κ = 1.5(M/M�)(r/rg)3/2 km. From here we see that, in

the encounter between a solar-type star (R∗ � 7 × 105 km) and a
106 M� BH, R/R� � 700 at a distance of one tidal radius from
the BH (from equation 1, rt � 48 rg in this case). This same ratio
reduces to about 30 at a periapsis distance of rp = 6 rg. On the other
hand, for the simulations presented in this paper, a typical smooth-
ing length used in the SPH description of the fluid will be at least
one order of magnitude less than the corresponding stellar radius.
Clearly, the ratio R/R� evaluated at a fix number of gravitational
radii from the BH, say at 6 rg, becomes larger (more favourable)
for more massive BHs.5 This gives us confidence that our approx-
imation should be valid for the type of TDEs discussed in the
next sections.

5 Note however that, for a fixed stellar type, the ratio R/R� evaluated at the
tidal radius acquires a constant value independent of the BH mass.

4.1 Geodesic motion limit

For an ensemble of pressureless, non-interacting particles, the evo-
lution equation given in equation (15) naturally reduces (by setting
P = 0) to the geodesic equation, i.e.

d2xi

dt2
= − (

giλ − ẋig0λ
) (

∂gμλ

∂xσ
− 1

2

∂gμσ

∂xλ

)
ẋμ ẋσ , (24)

which is more commonly expressed in terms of proper time deriva-
tives as (Misner, Thorne & Wheeler 1973)

d2xμ

dτ 2
+ 	

μ
νλ

dxν

dτ

dxλ

dτ
= 0. (25)

The geodesic equation (24) constitutes a system of second order,
coupled ordinary differential equations. Nevertheless, in the case of
the Kerr space–time, the existence of four first integrals of motion
allows us to partially decouple and reduce them to a set of first-order
ordinary differential equations that can be further solved analytically
(e.g. Bardeen 1973; Chandrasekhar 1983; Frolov & Novikov 1998;
Tejeda, Taylor & Miller 2013). See Appendix A for a brief overview
of time-like geodesics in this space–time. In this appendix we also
outline the procedure that we follow to generate initial conditions
from a given set of orbital parameters.

Throughout the rest of the paper, all of the geodesic trajectories
that we present (for instance, in comparison with the orbits of the
centres of mass) result from the direct integration of equation (24)
for a point mass (with the same initial constants of motion as the
stellar CM) using a fourth-order Runge–Kutta integrator (RK4),
completely independent of our SPH code.

In a TDE, equation (24) will be obeyed by the trajectory of
the star’s CM (with some caveats discussed below), and by the
individual trajectories of the fluid elements after the star has been
disrupted, when self-gravity and hydrodynamic forces no longer
play a significant role. A common way to evaluate how well an
approximate method reproduces effects such as periapsis shift and
orbital plane precession is to compare the trajectory of the CM with
the corresponding geodesic (i.e. the one having the same constants
of motion). While this is in many cases a meaningful comparison,
there are cases where deviations are expected.

First, for deep encounters (impact parameter β � 1), where com-
plete disruption occurs from the very first periapsis passage, the
wide spread in specific orbital energies and accompanying redistri-
bution of angular momentum results in a fraction of the fluid being
launched on plunging orbits. As such fluid elements are accreted,
the CM of the debris stream is effectively calculated on a different
set of particles and therefore the CM trajectory deviates from the
original geodesic. An example of such a case (for β = 10) can be
seen in the right-hand panel of Fig. 3, which shows the disruption
of a solar-type star by a 106 M� Schwarzschild BH, which will be
discussed further below.

Another effect present in deep encounters is related to the ge-
ometrical shape of the debris. Typically, once a star is disrupted
and the fluid elements move along (nearly) independent geodesics,
each having experienced a different periapsis shift, the stellar debris
will expand into a crescent shape (first observed and discussed by
Laguna et al. 1993). For encounters with small rp/M ratios, the large
spread in periapsis shifts may stretch the crescent-shaped debris into
a spiral (as seen before in the simulations of Kobayashi et al. 2004;
Cheng & Bogdanović 2014; see also Fig. 3), causing the CM to
drift outside the particle distribution; as the physical extent of the
debris becomes comparable to its distance from the BH, the CM is
no longer meaningful in providing information about the motion of
the fluid as a whole around the BH. This effect is only relevant for
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Figure 3. Tidal disruption of a solar-type star by a 106 M� Schwarzschild BH. Left-hand panel: trajectory of the CM of the star (solid line), compared with
the geodesic trajectory (dashed line), for three canonical TDEs with impact parameters β = 1, 5 and 10, respectively. The tidal radius of the BH is shown as a
dash–dotted circle. For β = 1 and 5 our results are indistinguishable from the exact geodesic motion (and hence the dashed line is not clearly visible), but for the
β = 10 case some deviations are expected, see main text, Section 4.1. For this reason we also plot the trajectory of the CM of the core 200 particles (dotted red
line), which is indistinguishable from the geodesic (see main text, Section 4.1.1, for justification and interpretation). Right-hand panel: snapshots of the disrupted
star with β = 10, at different times before the disruption (blue) and after the disruption (black) (t = −371.6, −238, −138.5, −41.3; 58, 156.4, 254.7, 352.7 s).

relativistic simulations, where the stream is deformed by periapsis
and orbital plane precessions.

Finally, a departure from geodesic motion also occurs due to
the fact that orbital energy is converted into heat deposited in the
oscillation modes of the star, which changes the total energy of the
fluid, even though the dissipated energy (∝M∗/R∗) is normally a
few orders of magnitude smaller than the typical spread in energies
at periapsis (∝MR∗/rp

2), and therefore does not produce noticeable
effects.

4.1.1 Schwarzschild space–time

The simplest possible test is for a TDE involving a non-rotating BH:
in such a case, the orbital motion is confined to one plane, and the
main qualitative relativistic effect is the periapsis precession. The
left-hand panel of Fig. 3 shows the trajectory of the CM (solid lines)
and the geodesic trajectory (dashed lines) for three simulations of
canonical (M∗ = M�, R∗ = R�, M = 106 M�, a∗ = 0) TDEs
with impact parameters β = 1, 5 and 10. These results can be
directly compared with those obtained using relativistic SPH codes
by Laguna et al. (1993, fig. 1) and Kobayashi et al. (2004, fig. 2).
In agreement with their results, we find the trajectory of the CM to
be indistinguishable from the geodesic for β = 1 and 5, while the
small departure that occurs for β = 10 is caused by a combination
of the reasons discussed above.

As support for our interpretation of this departure, for the β = 10
case we also plot the trajectory of the CM for the Nc core SPH
particles, i.e. the Nc particles that – at the beginning of the simulation
– are the closest to the CM of the star. The number Nc = 200 has been
chosen so that, on the one hand these particles are neither accreted,
nor does their CM drift away from the gas distribution, and, on the
other hand the discretization errors are small enough for their CM to
reproduce the geodesic. For a much smaller Nc, the average energy

and angular momentum would be slightly different from those of
the star and of the geodesic, failing to reproduce geodesic motion;
for a much larger Nc, the geometric distortion would produce the
same departure from geodesics that occurs for the CM of the star
itself, as explained above.

The right-hand panel shows snapshots of the tidal debris before,
during and after the first periapsis passage in the β = 10 disrup-
tion; our results are in excellent agreement with the simulation of
Kobayashi et al. (2004, fig. 3).

4.1.2 Kerr space–time, equatorial orbits

Next, we simulated a TDE involving a rotating BH in the particular
case in which the star’s CM motion is confined to the equatorial
plane (i.e. to the plane perpendicular to the BH spin). Previous sim-
ulations by Haas et al. (2012) and Kesden (2012) found that, for a
given impact parameter, stars are more easily disrupted if they ap-
proach the BH on a retrograde orbit (represented here as a negative
BH spin parameter a∗ < 0, cf. Section 2). Fig. 4 shows the distribu-
tion of the stellar debris after disruption by a BH with M = 108 M�
and various spin parameters (a∗ = 0, ±0.5 and ±0.99). We simu-
lated the disruption of a solar-type star (M∗ = M�, R∗ = R�) on
an orbit with periapsis distance rp = 6 M. Since this corresponds to
an impact parameter of β � 0.36, the Newtonian simulation does
not result in disruption: the star is barely tidally deformed, and sim-
ply continues along its original trajectory. The relativistic effects
at 6 M, however, are strong enough that all of the Kerr simulations
(and the Schwarzschild one) result in strong tidal deformation, the
formation of tidal tails and (with the exception of the a∗ = 0.99 sim-
ulation) some fraction of the stellar material being stripped away.
This fraction of unbound material is given by fub = 1 − fb, where
the self-bound fraction fb is computed using the iterative-based
prescription introduced by Guillochon & Ramirez-Ruiz (2013,
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Figure 4. Tidal disruption of a solar-type star (M∗ = M�, R∗ = R�) by a 108 M� Kerr BH for different values of the spin parameter. The snapshots show
the matter distribution ≈12 h after the first periapsis passage, while the lines represent the geodesics of the corresponding orbits. The periapsis distance in all
cases is rp = 6 M, corresponding to an impact parameter β � 0.36. The solid black curve represents the Newtonian simulation; the solid red curve represents
the disruption by a non-rotating (a∗ = 0) BH; the dashed (dotted) curves represent the trajectories of stars on prograde (retrograde) orbits around BHs with
spin parameters 0.5 (green) and 0.99 (blue). The simulations were made using KS coordinates. For clarity purposes, the stellar debris has been magnified by
a factor of 10 for all six simulations; the magnification is performed as a geometric scaling operation during rendering, but the colours are preserved in order
to yield the correct density. The BH position is marked by a black cross, while the gravitational radius rg is marked by a grey disc.

section 2.2), which we have previously used successfully with
SPH in Gafton et al. (2015). During this iterative procedure, the
(Newtonian) gravitational self-potential of the stellar debris was
computed using a fast binary tree (Gafton & Rosswog 2011).

The fraction fub depends strongly on the BH spin, and spans
from 0 (for a∗ = 0.99), to less than 1 per cent (for a∗ = 0), to
over 60 per cent (for a∗ = −0.99). This result is in agreement
with the observation of Gafton et al. (2015), that relativistic effects
connected to the amplified tidal stresses and the extra time spent
close to periapsis result in stronger disruptions (even for relatively
low β). Note, for instance, that for a∗ = −0.99 the periapsis shift
is so strong that the star completes one full winding around the BH
before receding.

We also ran a similar set of simulations for M = 106 M�. In this
case, rp = 6 M corresponds to an impact parameter of β � 7.85, and
so all of the simulations resulted in the star being fully disrupted.
Fig. 5 shows the distribution of the stellar debris after disruption,
together with the various geodesic trajectories corresponding to the
CM. All of the relativistic simulations resulted in a strong disruption
as compared with the Newtonian simulation: the maximum density
is lower and the debris stream is more elongated. For the retrograde
orbits, 6 M is very close to the marginally bound circular orbit
(located at ≈5.8 M), and therefore some particles are launched on
plunging orbits from the very first periapsis passage. This leads
to prompt accretion and a spiral-shaped debris stream around the
BH. For prograde orbits, disruptions are increasingly milder with

increasing BH spin, though always stronger than their Newtonian
counterpart.

4.1.3 Kerr space–time, off-equatorial orbits

Finally, we simulated a disruption of a solar-type star approaching
a rotating BH (a∗ = 0.98) along an off-equatorial trajectory. The
star was initially located in the equatorial plane but had a non-
zero polar angular velocity. This results in an angular span for its
latitudinal motion ranging from a minimum latitude (θa = 0.1π) to
a maximum one (θa′ = 0.9π) (see Appendix A2 for details). In this
situation, orbital plane precession is expected to play a significant
role in the shape and evolution of the stellar debris. Fig. 6 shows the
trajectory of the CM (solid line) and the geodesic trajectory (dashed
line) for three TDEs with increasing impact parameters (β = 0.55,
0.65 and 0.75) around a Kerr BH with M = 108 M� and spin
parameter a∗ = 0.98. The upper (lower) panels show the projection
of the orbit on to the x–y (x–z) plane. We also show a scatter plot of
the SPH particles in blue. Fig. 7 shows a three-dimensional view of
these same three encounters.

In all three simulations, relativistic effects are reproduced very
well: for β = 0.55 and 0.65, there is virtually no difference between
the CM and the geodesic trajectories, while for β = 0.75, after
several windings around the BH, the stream becomes so distorted
that the CM drifts off the geodesic trajectory. As discussed above,
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Figure 5. Tidal disruption of a solar-type star (M∗ = M�, R∗ = R�) by a
106 M� Kerr BH for different values of the spin parameter. The snapshots
show the matter distribution ≈15 min after the first periapsis passage, while
the lines represent the geodesics of the corresponding orbits. The periapsis
distance in all cases is rp = 6 M, corresponding to an impact parameter
β � 7.85. The solid black curve represents the Newtonian simulation; the
solid red curve represents the disruption by a non-rotating (a∗ = 0) BH;
the dashed (dotted) curves represent the trajectories of stars on prograde
(retrograde) orbits around BHs with spin parameters 0.5 (green) and 0.99
(blue). The simulations were made using KS coordinates. The gravitational
radius rg is marked by a grey disc.

this is simply a geometric effect. The orbits of the individual parti-
cles, which at this time are moving as point masses in the gravita-
tional field of the BH, still follow their respective geodesic trajec-
tories.

4.2 Comparison between Boyer–Lindquist and Kerr–Schild
coordinates

In this section we explore the validity of our approximate approach
by comparing the output of simulations of the same TDE as com-
puted using two different coordinate systems: BL and KS coordi-
nates. Useful expressions for both coordinate systems are collected
in Appendices B and C.

Because of the principle of covariance, two relativistic simula-
tions performed in different coordinate systems should give iden-
tical physical results. Since geodesic motion in Kerr space–time
is reproduced exactly with our code, any difference between the
BL and KS simulations will come from the Newtonian parts of the
code: the inclusion of Newtonian self-gravity (albeit with relativis-
tic corrections as described in Section 3.2), and the calculation of
interparticle distances (without the use of the metric), which enters
into the expressions for all interparticle forces.

In Fig. 8 we show the CM trajectory (left-hand panel) and a
post-disruption snapshot of the stellar debris (right-hand panel) for
a highly relativistic (rp/rg = 2.19), but mildly disruptive (β = 0.55)
simulation of the tidal disruption of a WD by a 5 × 105 M�
rotating BH with spin parameter a∗ = 0.98. As expected for
β = 0.55, the Newtonian encounter only results in a negligible
fraction (0.6 per cent) of the star being stripped away and forming

two very weak tidal tails. On the other hand, the relativistic simula-
tions result in a complete disruption of the star. From the left-hand
panel of this figure we see that the CM trajectories of the BL and
KS simulations are indistinguishable from each other. Furthermore,
both relativistic simulations result in full disruptions, and there is
no qualitative difference in shape or density profile between the
two snapshots of the debris stream (BL and KS), both taken at t �
2.5 min after the first periapsis passage.

We also ran several simulations of canonical (M/M∗ = 106) TDEs
with β = 1, 5 and 7 in order to perform a quantitative comparison
between the results obtained in the two coordinate systems. In Fig. 9
we plot histograms of the constants of motion, i.e. the energy E (top
panels) and angular momentum �z (lower panels) for Newtonian
(solid lines), BL (dashed line) and KS (dotted line) simulations,
see equations (A3) and (A4) in Appendix A. The �z histograms are
shifted and recentred around zero, since the Newtonian values are
strongly offset from the BL and KS ones. The agreement between
KS and BL is excellent in spite of the Newtonian parts of the code.
The energy histograms exhibit differences of the order of 3 per cent
for β = 5 and 6 per cent for β = 7, but the angular momentum
histograms are virtually identical (within less than 1 per cent) even
at β = 7.

In summary, we conclude that even for very deep encounters the
results of the BL and KS simulations are in excellent agreement.
This gives confidence that, at the very least, moderate (but possibly
also strong) relativistic encounters can be accurately simulated with
our method.

5 A PPLI CATI ONS

In the previous section, we focused on the region near to the BH so
as to make tests under significantly relativistic conditions. Now we
turn to the more extended range as illustrated in Fig. 1. In order to
demonstrate some of the possible applications of our new method,
we present here the results of three sets of TDE simulations for
rotating BHs and analyse the impact of the BH spin on: (a) the
distribution of the constants of motion (E and �z) after disruption,
and hence on the mass fallback rate; (b) the spread in mechanical
energies E after disruption, as compared with Newtonian simula-
tions and the analytical estimates of Stone et al. (2013); (c) the
exotic geometry of the tidal debris in the case of one particular set
of orbital parameters that has never been simulated before.

5.1 Impact of spin on mass fallback rate

We first simulated two sets of canonical TDEs (M = 106 M�,
M∗ = M�, R∗ = R�) with impact parameters β = 2 and 6. In each
case, we compared the results of a Newtonian simulation with five
relativistic simulations, one without spin (a∗ = 0), and the other
four with BH spins a∗ = ±0.5 and ±0.99, respectively. The β = 6
is chosen as a limiting case, so that the a∗ = −0.99 simulation
(which yields the most extreme disruption) would not result in part
of the debris being launched on plunging orbits from the very first
periapsis passage.

The results are presented in Figs 10 (geometric distribution of
the tidal debris at t � 57 h after the first periapsis passage) and 11
(mass fallback rates Ṁ). Each of these figures contains two panels,
for β = 2 (left) and for β = 6 (right). The mass fallback rate Ṁ

is computed by assuming that particles move on geodesic trajecto-
ries after disruption (i.e. that hydrodynamic and self-gravity forces
no longer play any role in their dynamics), and their trajectory is
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Figure 6. Trajectory of the CM of the star (solid line), compared with the geodesic motion (dashed line) for three TDEs around a Kerr BH (of mass
M = 108 M� and spin parameter a∗ = 0.98) with three different values of the impact parameter (β = 0.55, 0.65 and 0.75). Note that in the first two cases
the dashed and solid lines are indistinguishable from each other. The top and bottom panels show projections on to the x–y and x–z planes, respectively, with
the dash–dotted circles marking the tidal radius. The blue scatter plots show the SPH particles at times t � 21, 7.5 and 5 h (for β = 0.55, 0.65 and 0.75,
respectively) after the disruption, as they recede from the central BH. The CM trajectory in the last case (β = 0.75) has been interrupted at the point where the
tidal stream becomes so elongated, with a size comparable to the distance from the BH, that the CM is no longer meaningful (see Section 4.1).

Figure 7. Three-dimensional version of Fig. 6; again, the trajectory of the stellar CM (solid line) is compared with the geodesic trajectory (dashed line); the
three-dimensional particle distribution after disruption is shown as a blue scatter plot.

extrapolated based on their constants of motion. This yields a Keple-
rian orbit in the Newtonian case, but contains the proper relativistic
corrections to the geodesics in the relativistic cases.

For β = 2, there is only a minor difference in the debris dis-
tribution between the Newtonian and relativistic simulations, see
left-hand panel of Fig. 10. The BH spin does determine the po-
sition of the CM at the given time, but the shape of the debris
seems rather unaffected by the BH spin. In spite of the morpholog-

ical differences, the impact on the mass fallback rates is negligible,
see Fig. 11. All of the β = 2 simulations result in very similar Ṁ

curves. The relativistic ones are rising slightly more slowly (in about
a week), partly due to the extra time spent around periapsis, though
mostly due to the Newtonian energy spread being slightly larger (see
Fig. 12 for β = 2), thus resulting in more particles with lower eccen-
tricities. Nonetheless, all of the relativistic simulations give essen-
tially the same peak Ṁ rate, which is ≈13 per cent smaller than the

MNRAS 469, 4483–4503 (2017)

 



4494 E. Tejeda et al.

Figure 8. Comparison between three simulations with the same initial conditions (M = 5 × 105 M�; a∗ = 0.98; M∗ = 0.6 M�; R∗ = 0.014 R�; β = 0.55):
relativistic BL, relativistic KS and Newtonian (N). Left-hand panel: the trajectory of the CM (solid lines) compared with the geodesics (dashed lines). The BH
gravitational radius and the tidal radius are marked as solid and dashed grey circles, respectively. Right-hand panel: the spatial distribution of the debris after
disruption, colour coded by density integrated along the line-of-sight. The percentage of self-bound debris is given in the title of each panel: the encounter
results in a complete disruption in both KS and BL coordinates, but strips away less than 1 per cent of the star in the Newtonian case. In both panels only KS
coordinates are being used for plotting; results obtained in the BL simulation are transformed into KS coordinates as part of the post-processing before plotting.

Figure 9. Histograms of the two constants of motion relevant in a TDE around a non-rotating BH (a∗ = 0): the specific mechanical energy E , and the specific
angular momentum �z; the Newtonian results (N; solid black line) are compared with the relativistic results computed in BL (dashed red line) and KS (dotted
blue line) coordinates. We point out that while all energies are centred around 0, the angular momentum in the Newtonian and relativistic simulations differs
significantly (in order to get an orbit with the same r0 and β), therefore we plotted the difference between �z and the average initial value 〈�z〉, which had the
following values: for β = 1, 9.70 for N and 9.92 for KS and BL; for β = 5, 4.34 for N and 4.89 for KS and BL; for β = 7, 3.67 for N and 4.37 for KS and BL.
Even for strong encounters with β = 7, the BL and KS results are in excellent agreement.

Newtonian value; there is, however, no discernible influence from
the BH spin.

For β = 6, the differences in the shape of the debris are more
pronounced, as the importance of relativistic effects in a disrup-
tion is directly connected to the ratio of the periapsis distance rp to

the gravitational radius rg. We observe that with all other parame-
ters being the same, the simulations with positive BH spin (i.e. of
stars on prograde orbits) lie in between the Schwarzschild and the
Newtonian simulations, with the TDEs with larger a∗ being closer
to Newtonian. Simulations with negative spin (i.e. of stars on
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Figure 10. Spatial distribution of the tidal debris for the canonical TDEs with β = 2 (left-hand panel) and β = 6 (right-hand panel) discussed in Section 5.1.
For β = 2, the effects of the BH spin are small: the matter distribution looks very similar at t � 57 h after disruption, and is simply shifted due the different
periapsis shifts. For β = 6, however, the Newtonian encounter results in a markedly different debris distribution (a thin stream returning to the BH) from the
relativistic simulations, which result in thick debris streams. The extent of the disruption (quantifiable, for instance, by the maximum density of the debris) and
the thickness is larger for the Kerr simulations, and progressively increases as a∗ goes from +0.99 to −0.99.

Figure 11. Mass fallback rates Ṁ of the debris after the first periapsis passage for the canonical TDEs with β = 2 (left-hand panel) and β = 6 (right-hand
panel) discussed in Section 5.1. The solid black curve represents the Newtonian simulation; the solid red curve represents the disruption by a non-rotating
(a∗ = 0) BH; the dashed (dotted) curves represent the trajectories of stars on prograde (retrograde) orbits around BHs with spin parameters 0.5 (green) and
0.99 (blue).

retrograde orbits) are more extreme than the Schwarzschild sim-
ulations. Again, we cannot report a significant difference in the Ṁ

rates for the β = 6 case: the peak Ṁ values do not vary by more
than ∼10 per cent, and the time at which this maximum is reached
does not vary by more than ∼2 weeks between all simulations.
We do note, however, that the Ṁ curves for the simulations with
negative BH spin (dotted lines), and in particular for a∗ = −0.99,
exhibit a rather sharp rise resulting from the wider spread in orbital
energies (cf. Fig. 12 for β = 6), which is probably correlated with
the ‘puffed up’ geometry of the debris stream (see the right-hand
panel of Fig. 10).

At later times (a few months after the periapsis passage), the Ṁ

curves from all of our simulations settle into a t−5/3 power-law decay
curve, which is probably related to our simple initial conditions and

stellar structure, and the γ = 5/3 polytropic equation of state. A
certain deviation away from the t−5/3 decay is expected for stars with
more realistic structure, rotation and more complex EOS. Since the
BH spin appears to have very little impact on the shape of the Ṁ

curves, we conclude that it would be extremely difficult to infer it
from the fallback rates.

Our results differ somewhat from Kesden (2012), which to our
knowledge is the only paper that methodically analyses the influence
of BH spin on the return rates, and there are a number of possible
sources for this discrepancy. The most prominent is the fact that
Kesden (2012) does not include a self-consistent treatment of the
fluid’s hydrodynamics or self-gravity. He used a semi-analytical
approach that considers the whole stellar material as becoming in-
stantaneously unbound at a predetermined point in its trajectory,

MNRAS 469, 4483–4503 (2017)

 



4496 E. Tejeda et al.

Figure 12. Spread in orbital energies �E after a disruption as a function
of the impact parameter β, in Newtonian simulations (solid black line), and
in Kerr simulations with various BH spins: a∗ = 0 (solid red line), ±0.5
(dashed/dotted green line) and ±0.99 (dashed/dotted blue line). The typical
∝β2 and ∝β0 scalings normally used in analytical studies (see equation 26)
are shown with dashed and dotted black lines, respectively. We observe that:
(a) the BH spin has a negligible effect on �E below β � 8, and (b) the
best fit to the data is given by a piecewise polynomial, with �E exhibiting a
rough empirical scaling ∝β0 between β ∼ 1 and β ∼ 4, and ∝β2 for larger
values of β.

namely rp (though in section V he mentions that if one were to con-
sider rt instead, the expected relativistic corrections would be much
smaller). However, our simulations do reproduce the qualitative ef-
fect of the BH spin, i.e. the fact that negative spin parameters (in
his simulations represented as orbits with inclination ι = π ) result
in higher accretion rates with earlier rise times as compared with
a∗ = 0 (see his figs 11 and 13, for instance).

5.2 Impact of spin on the spread in energies after disruption

The fallback rate Ṁ , the return time for the most bound debris tfall,
the peak fallback rate Ṁpeak and the time tEdd at which Ṁ becomes
sub-Eddington all depend on the spread in specific orbital energies
�E of the debris. This spread originates almost entirely from the
spread in potential energies across the star at the moment when
the star’s fluid elements begin moving on geodesic trajectories.
This moment has long been considered to be the first periapsis
passage of the star around the BH, although more recent studies (e.g.
Guillochon & Ramirez-Ruiz 2013; Stone et al. 2013) have shown
that the stellar fluid already starts moving on geodesic trajectories
as it enters the tidal radius.

A simple, first-order Taylor expansion of the potential energy at
either rp or rt yields a very accurate estimate for the energy spread
�E ,

�E = kβn GMR�

r2
t

, (26)

where k is a constant of order unity that depends on the stellar
structure and rotation. If �E is computed by taking the potential
gradient at the tidal radius, n = 0 and so �E is independent of
β, while if �E is computed at periapsis then n = 2 (which is the
traditional picture). From previous work (Guillochon & Ramirez-
Ruiz 2013), n is expected to have piecewise values or even a more
complicated dependence on β, since disruption does not occur at an
instant in time, but is rather gradual, with the stellar material at the
surface being stripped away first, and the stellar core being disrupted
last; however, as the two estimations are in a sense limiting cases,
n is expected to take values between 0 and 2.

The relevance of the n(β) dependence resides in the observational
implications of n. We point the reader to section 8 of Stone et al.

(2013), where it is shown that Ṁ , tfall, Ṁpeak and tEdd all depend
(either linearly or not) on βn. Thus, if n = 0, then none of these
quantities will depend on β, and the signature of a TDE will be
completely determined by the combination of M, M∗ and R∗. If,
however, n approaches 2, one would expect major differences in
the observational signatures of disruptions with different impact
parameters, and the number of possible fallback curves would be
greatly increased. Further implications of n for the optical transient
searches are discussed by Stone et al. (2013).

Given the astrophysical relevance of �E (and of n itself) for future
observations of TDEs, we have used our new method to determine
the dependence of n not only on β, but also on the BH spin.

For this purpose, we ran a number of simulations (M = 106 M�,
M∗ = M�, R∗ = R�) with impact parameters between β = 0.5
and 11, and with Newtonian, Schwarzschild and Kerr BHs. For the
latter, we considered rotating and counter-rotating BHs with spin
parameters a∗ = ±0.5 and ±0.99. The simulations were run until
2.5 d (or about 65 dynamical time-scales of the initial star) after
the first periapsis passage (for β � 8), or until the beginning of
the second periapsis passage (for the relativistic simulations with
β � 8). At the end of the simulations, we computed the mechanical
energy E of each SPH particle, sorted the particles in terms of E , and
defined the �E interval by excluding the 1 per cent of the particles
with the lowest energy, and the 1 per cent with the highest, i.e. �E is
the interval centred on the median energy that contains 98 per cent
of all the SPH particles.

In Fig. 12 we plot the data points for �E(β) as obtained in
all six sets of simulations. The latter are differentiated in the
plot by line colour and style as described in the plot legend
(Newtonian: solid black; Schwarzschild: solid red; pro-
grade/retrograde Kerr: dashed/dotted green and blue, for a∗ = 0.5
and 0.99, respectively). The spread in energies is normalized by
a factor Eref equal to GMR�/r

2
t (see equation 26), which means

that the constant k can easily be read off the plot, as it is equal to
�E/Eref at β = 1; thus, for our γ = 5/3 non-rotating polytrope, we
find numerically that k ≈ 2.1. The figure also contains the analytical
fits for n = 0 and 2 (represented as dotted and dashed black lines,
respectively, and normalized to the same value of k as obtained in
the simulations).

In agreement with Stone et al. (2013), we find that for such a
small M/M∗ ratio (106) relativistic effects are not strong enough to
produce any significant deviation from the Newtonian simulations,
except for the deepest encounters with impact parameters β � 8.
Also, in agreement with both Stone et al. (2013) and Guillochon
& Ramirez-Ruiz (2013), we find that for β < 1, in the regime
of partial disruptions, n drops sharply, with the cut-off around
β � 0.6, below which the entire star survives undisrupted. For
mild encounters (1 � β � 4), n = 0 is an excellent approximation.
For deeper encounters, n increases towards 2 (although in the New-
tonian simulations it never reaches n = 2). This increase in energy
spread is accounted for by the extra energy released at the strong
shock that forms across the star as it gets more violently compressed
for larger values of β. The fact that this increase is more pronounced
for the relativistic encounters is a reflection of the corresponding
tidal compression being more severe than the Newtonian one (cf.
discussion in Section 2).

5.3 Impact of spin on debris geometry

Finally, we simulated the tidal disruption of a representative WD
(M∗ = 0.6 M�, modelled as a γ = 5/3 polytrope) by a BH with
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Figure 13. Spatial distribution of the debris stream for a close relativistic encounter between a 0.6 M� WD and a 106 M� BH, with rp/rg � 1.5. The
combined periapsis and orbital plane precession, different for each SPH particle, leads to the debris stream taking a helicoidal shape, while the negligible
contribution of self-gravity (even across the stream) leads to the stream thickness increasing with time.

mass M = 106 M� and spin parameter a∗ = 0.98. For such a
rapidly rotating BH, the WD can approach as close as 1.2 M without
plunging into the BH. We used an impact parameter: β = 0.5,
corresponding to a ratio rp/rg � 1.5, and set the star on an inclined
orbit (relative to the BH spin), with both the initial and the minimum
latitudes (see Appendix A2) equal to θ = 0.35π; the simulation
started at a distance of 10rt from the BH and was performed in BL
coordinates.

It is important to stress that such a disruption is only possible for
a rotating BH (and therefore it can only be simulated with a code
that properly accounts for the fluid motion in Kerr space–time).
In both Newtonian and Schwarzschild simulations, where the ac-
cretion radius is normally placed at or outside the Schwarzschild
radius (2 M), this combination of orbital parameters would re-
sult in the star being promptly swallowed by the BH, without
any disruption.

The geometrical distribution of the tidal debris is shown in Fig. 13.
The upper panels present a projection of the SPH particles on to
the x–y, x–z and y–z planes, while the lower panels present a three-
dimensional view of the SPH particles from different perspectives
(azimuth and elevation angles of the ‘observer’).

First, we find that the WD is completely disrupted in spite of
the low impact parameter β, which can be explained by the strong
relativistic effects (increased tidal stresses and extra time spent near

periapsis, as discussed in Gafton et al. 2015). The first of the six
plots shows a geometry that is fairly common for a deep relativis-
tic encounter (i.e. with small rp/rg ratio), with the different fluid
elements experiencing different amounts of periapsis precession,
resulting in the debris stream being stretched into a long spiral. In
this case, however, the particles also experience individual degrees
of orbital plane precession, which results in a helicoidal shape of
the debris stream.

We also note that the thickness of the stream increases signifi-
cantly at later times. Because of the different periapsis shifts expe-
rienced by each individual fluid element, not only does the stream
take a spiral shape, but – as long as self-gravity forces are small
enough across the stream – it also increases in thickness. Since
the prediction that orbital plane precession will impede the self-
intersection of the stream for many orbits is predicated on its being
thin, this observed increase in thickness (due to geodesic motion)
may have a crucial influence on whether the stream self-intersects
early or not, and hence on the circularization time-scale. This is
an effect that, to our knowledge, has not been previously discussed
in the literature. It is clear that in order to properly explore this,
a thorough exploration of the parameter space is needed. We thus
leave this for future studies. We would like to remark, however, that
this effect is only to be expected in deep relativistic encounters, i.e.
those for which rp < 10 rg.
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6 SU M M A RY

We have presented here a novel method for modelling relativistic
effects in the dynamics of a self-gravitating fluid in the presence of
a dominant massive BH. This approximate approach combines an
exact relativistic description of the fluid dynamics coupled with a
Newtonian treatment of the fluid’s self-gravity.

We have given explicit expressions for the evolution equations
relevant for motion around a Kerr BH using both BL and KS co-
ordinate systems. We have implemented these equations within a
Newtonian SPH code and shown that it performs with virtually no
additional computational cost. We have demonstrated the use of
this new tool by applying it to the study of stellar TDEs by super-
massive BHs. Our approach allows exploration of the star’s fate far
away from the BH (in the Newtonian regime) down to the strong
relativistic regime near the spinning BH without having to change
the simulation methodology. In addition, this approach should also
be useful for other astrophysical settings where the mass of a cen-
tral BH is the dominant factor determining the overall space–time
curvature.

The new methodology captures to an excellent precision pure
geodesic motion, even for off-equatorial orbits and for very deep
encounters. Moreover, using this approach we recovered previous
results of relativistic simulations of TDEs. As an additional valida-
tion test, we have compared the output of several relativistic TDE
simulations starting from the same initial conditions but evolved
using two different coordinate systems. The resulting CM trajecto-
ries and constants of motion deviate from each other by less than a
few per cent, but are completely different from the corresponding
Newtonian values.

We have applied the new approach to exploring the effect of the
BH spin parameter on the fallback rate of the returning debris after
a TDE and found that it does not have any significant effect on
this. However, the combined effects of periapsis and orbital plane
precessions in deep encounters imprint heavily on the morphology
of the debris stream. This new tool will be applied in future studies
of relativistic effects in tidal disruption encounters.
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A P P E N D I X A : IN I T I A L C O N D I T I O N S FO R T R A J E C TO R I E S I N K E R R S PAC E – T I M E

A1 Time-like geodesics and constants of motion

The line element of the Kerr metric in BL coordinates is

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4 aMr sin2 θ

ρ2
dt dφ + ρ2

�
dr2 + ρ2dθ2 + � sin2 θ

ρ2
dφ2, (A1)

with ρ, � and � defined as

ρ2 = r2 + a2 cos2 θ,

� = r2 − 2Mr + a2,

� = (
r2 + a2

)2 − a2� sin2 θ. (A2)

Consider a test particle with four-velocity Uμ = dxμ/dτ following a time-like geodesic where τ is the proper time. In addition to the trivially
conserved modulus of the four-velocity (i.e. Uμ Uμ = −1), the symmetries of the Kerr metric lead to the existence of three additional
conserved quantities: the specific energy E , the projection of the specific angular momentum along the BH’s spin axis �z and the Carter
constant Q. Using BL coordinates, these quantities are given by

E = 	

(
1 − 2Mr

ρ2
+ 2 aMr sin2 θ

ρ2
φ̇

)
, (A3)

�z = 	
(
�φ̇ − 2 aMr

) sin2 θ

ρ2
, (A4)

Q = ρ4	2θ̇2 + �2
z cot2 θ − ε a2 cos2 θ, (A5)

where ε ≡ E2 − 1 and 	 is the generalized Lorentz factor given by

	 =
(

1 − 2Mr

ρ2
+ 4 aMr sin2 θ

ρ2
φ̇ − ρ2

�
ṙ2 − ρ2θ̇2 − � sin2 θ

ρ2
φ̇2

)− 1
2

. (A6)

In all of these expressions, an overdot denotes a derivative with respect to the coordinate time t. For convenience, we will sometimes also
make use of the following combination of the conserved quantities:

�2 = Q + (�z − a E)2, (A7)

which is clearly a conserved quantity as well. This quantity is connected to the square of the total magnitude of the angular momentum
although being coupled, in a non-trivial way, with the energy of the test particle and the spin of the BH (see de Felice & Preti 1999, for a
discussion about the physical interpretation of �2).

In the case of Kerr space–time, the existence of these first integrals of motion allows us to reduce the geodesic equations (equation 25) to
the following set of partially decoupled, first-order ordinary differential equations:

ρ2 dr

dτ
= ±√R(r), (A8)

ρ2 dθ

dτ
= ±√

�(θ ), (A9)

ρ2 dφ

dτ
= A(θ )

sin2 θ
+ a

�
B(r), (A10)

ρ2 dt

dτ
= a A(θ ) + r2 + a2

�
B(r), (A11)
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with

R(r) = B2(r) − (r2 + �2)�, (A12)

�(θ ) = Q + ε a2 cos2 θ − �2
z cot2 θ, (A13)

A(θ ) = �z − a E sin2 θ, (A14)

B(r) = (
r2 + a2

) E − a �z. (A15)

The signs in equations (A8) and (A9) are independent of each other and change whenever the test particle reaches a radial or polar turning
point, respectively, in its trajectory.

A2 Initial conditions

We want to determine the initial velocities for a test particle (or for the CM of an incoming star) given the initial position (r0, θ0, φ0), the
impact parameter β and the orbital eccentricity e. Note that specifying β and e is equivalent to fixing the pericentre rp and apocentre ra

distances of the orbit, since, for a fixed tidal radius rt, we have

rp = rt

β
, ra = rp

(
1 + e

1 − e

)
. (A16)

For off-equatorial trajectories we also need to provide the angular span of the polar motion, which can be done by either specifying the Carter
constant Q or, perhaps more intuitively, the minimum and maximum latitudes θ a and θa′ such that the polar coordinate θ is restricted to the
interval θ ∈ [θa, θa′ ]. Note that these two latitudes are simply related by θa′ = π − θa, so it is sufficient to specify one of them, say θ a.

Our aim now is to find the set of initial velocities ṙ0, θ̇0, φ̇0 for a given set of initial positions r0, θ0, φ0 and turning points rp, ra, θ a. The
corresponding Cartesian positions and velocities can be in turn computed using equations (B6)–(B8) below. From equations (A8)–(A11) we
see that our problem reduces to finding the set of first integrals of motion E , �z and Q from the information that we already have. From the
polar equation (A9) we have

Q = �2
z cot2 θa − ε a2 cos2 θa, (A17)

while, from the radial function in (A12) we get

R(r) = ε r4 + 2Mr3 + (ε a2 − �2
z − Q)r2 + 2 rg �2r − a2Q. (A18)

We can rewrite this expression now in terms of the turning points:

R(r) = ε(r − ra)(r − rp)(r − rc)(r − rd), (A19)

where rc and rd are two, as yet unspecified, extra roots of the polynomial R(r). If we compare equal powers of r in equations (A18) and
(A19), we can solve for the conserved quantities as a function of the turning points as

ε = − 2M

ra + rp + rc + rd
, (A20)

Q = 2Mra rp rc rd

a2(ra + rp + rc + rd)
, (A21)

�2 = ra rp(rc + rd) + rc rd(ra + rp)

ra + rp + rc + rd
, (A22)

�2
z = 2M

a2
[
ra rp + rc rd + (ra + rp)(rc + rd) − a2

] − ra rp rc rd

a2(ra + rp + rc + rd)
. (A23)

We can now combine these equations together with equations (A7) and (A17) and obtain the following system of two equations in the two
unknown roots rc and rd:

a2 cos2 θa

[
ra rp + rc rd + (ra + rp)(rc + rd) − a2 cos2 θa

] − ra rp rc rd = 0, (A24)

{
a2(ra + rp + rc + rd − 4M) + 2M

[
ra rp + rc rd + (ra + rp)(rc + rd)

] − ra rp(rc + rd) − rc rd(ra + rp)
}2

+ 8M
{

r4
a + ra rp rc rd − a2

[
ra rp + rc rd + (ra + rp)(rc + rd)

] }
(ra + rp + rc + rd − 2M) = 0. (A25)

From equation (A24) we can solve for either rc or rd, and then substitute the result into equation (A25). Doing this gives a fourth-order
polynomial in that unknown root. Once this root has been found, we obtain the other one by substituting back into equation (A24).

For parabolic motion we have that ε = 0 and ra = ∞. The rest of the constants of motion are given by

Q = 2M
rp rc rd

a2
, (A26)
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�2 = [
rp(rc + rd) + rc rd

]
, (A27)

�2
z = 2M

[
rp + rc + rd − rp rc rd

a2

]
. (A28)

In this case the equations to solve are

rc rd rp − a2 cos2 θa(rc + rd + rp) = 0, (A29)

[
a2 + 2M(rp + rc + rd) − rp(rc + rd) − rc rd

]2 + 8M
[
rp rc rd − a2(rp + rc + rd)

] = 0. (A30)

Analogously to the previous case, from equation (A29) we can solve for either rc or rd, and then substitute the result into equation (A30).
Doing this results now in a third-order polynomial in that unknown root. Once this root has been found, we obtain the other one by substituting
back into equation (A29).

With all of the turning points at hand, we can now compute the corresponding constants of motion ε, Q, � and �z using equations
(A20)–(A23). Next, the initial velocities are computed using equations (A8)–(A11), which, in turn, can be transformed into Cartesian-like
coordinates and velocities via equation (B1) and equations (B6)–(B8).

A P P E N D I X B: C A RT E S I A N FO R M O F TH E B OY E R – L I N D QU I S T C O O R D I NAT E S

The Cartesian-like coordinates (x, y, z) associated with the spatial BL coordinates (r, θ , φ) are defined as

x =
√

r2 + a2 sin θ cos φ,

y =
√

r2 + a2 sin θ sin φ,

z = r cos θ, (B1)

while the time coordinate t is taken to be the same in both systems. By inverting equation (A2) we get the following expressions for the
inverse transformation:

r =
√

1

2

(
x2 + y2 + z2 − a2

) + 1

2

√(
x2 + y2 + z2 − a2

)2 + 4 a2z2,

θ = cos−1
( z

r

)
,

ψ = tan−1
(y

x

)
. (B2)

In terms of Cartesian-like coordinates, the differential line element is

ds2 = −(c dt)2 + dx2 + dy2 + dz2 + 2Mr

ρ2

{ [
dt − a

(
x dy − y dx

r2 + a2

)]2

+
[
r2 (x dx + y dy) + (r2 + a2)z dz

]2

r2�(r2 + a2)

}
, (B3)

where now r and ρ should be considered as implicit functions of (x, y, z) satisfying

r4 − r2(x2 + y2 + z2 − a2) − a2z2 = 0, (B4)

ρ2 = r2 + a2z2

r2
. (B5)

B1 Velocity transformations

By differentiating equation (B1) with respect to the coordinate time t we obtain the following expressions for the velocity transformations:

ẋ = r√
r2 + a2

sin θ cos φ ṙ +
√

r2 + a2
(
cos θ cos φ θ̇ − sin θ sin φ φ̇

)
, (B6)

ẏ = r√
r2 + a2

sin θ sin φ ṙ +
√

r2 + a2
(
cos θ sin φ θ̇ + sin θ cos φ φ̇

)
, (B7)

ż = cos θ ṙ − r sin θ θ̇ , (B8)

where a dot denotes differentiation with respect to t. We can invert these expressions as

ρ2ṙ = r (x ẋ + y ẏ + z ż) + a2z ż

r
, (B9)

ρ2θ̇ = z (x ẋ + y ẏ + z ż) − r2ż√
r2 − z2

, (B10)

φ̇ = x ẏ − y ẋ

x2 + y2
. (B11)
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B2 Constants of motion

In this section we collect the necessary expressions for calculating the constants of motion from the Cartesian-like coordinates:

E = 	

{
1 − 2Mr

ρ2

[
1 − a

(
x ẏ − y ẋ

r2 + a2

)]}
, (B12)

�z = 	

{
x ẏ − ẋ y − 2Ma r

ρ2

(
x2 + y2

r2 + a2

) [
1 − a

(
x ẏ − y ẋ

r2 + a2

)]}
, (B13)

�2 = 	2

[
r2

(
ẋ2 + ẏ2 + ż2

) − (x ẋ + y ẏ + z ż)2 − 2 a(x ẏ − y ẋ) + a2

(
x2 + y2

r2 + a2
+ ẋ2 + ẏ2

) ]
+ a2z2

r2
. (B14)

The Lorentz factor 	 = dt/dτ is calculated from the expression for the metric in equation (B2) as

	 =
(

1 − ẋ2 − ẏ2 − ż2 − 2Mr

ρ2

{[
1 − a

(
x ẏ − y ẋ

r2 + a2

)]2

+
[
r2 (x ẋ + y ẏ) + (r2 + a2)z ż

]2

r2�(r2 + a2)

})−1/2

. (B15)

B3 Acceleration

The hydrodynamic terms in the evolution equation are given by

	2� ω ẍ = −∂P

∂x
− ∂P

∂t

{
ẋ

[
1 + 2Mr(r2 + a2)

� ρ2

]
+ 2 aMr y

� ρ2

}
+ ∂P

∂x

(
2Mr

ρ2

) [
1

r2 + a2

(
r2x2

r2 + a2
+ a2y2

�

)
+ a y ẋ

�

]

+ ∂P

∂y

(
2Mr

ρ2

) [
x y

r2 + a2

(
r2

r2 + a2
− a2

�

)
− a x ẋ

�

]
+ ∂P

∂z

(
2Mr

ρ2

)
x z

r2 + a2
, (B16)

	2� ω ÿ = −∂P

∂y
− ∂P

∂t

{
ẏ

[
1 + 2Mr(r2 + a2)

� ρ2

]
− 2 aMr x

� ρ2

}
+ ∂P

∂x

(
2Mr

ρ2

) [
x y

r2 + a2

(
r2

r2 + a2
− a2

�

)

+ a y ẏ

�

]
+ ∂P

∂y

(
2Mr

ρ2

) [
1

r2 + a2

(
r2y2

r2 + a2
+ a2x2

�

)
− a x ẏ

�

]
+ ∂P

∂z

(
2Mr

ρ2

)
y z

r2 + a2
, (B17)

	2� ω z̈ = −∂P

∂z
− ∂P

∂t

{
ż

[
1 + 2Mr(r2 + a2)

� ρ2

]}
+ ∂P

∂x

(
2Mr

ρ2

) (
x z

r2 + a2
+ a y ż

�

)

+ ∂P

∂y

(
2Mr

ρ2

) (
y z

r2 + a2
− a x ż

�

)
+ ∂P

∂z

(
2Mr

ρ2

)
z2

r2
. (B18)

A P P E N D I X C : C A RT E S I A N FO R M O F TH E K E R R – S C H I L D C O O R D I NAT E S

The Kerr–Schild (KS) system of coordinates is connected to the BL one through the transformation:

dT = dt + 2Mr

�
dr,

dψ = dφ + a

�
dr. (C1)

Using this transformation, the line element of the Kerr metric in KS coordinates becomes

ds2 = −
(

1 − 2Mr

ρ2

)
dT 2 +

(
1 + 2Mr

ρ2

)
dr2 + 4Mr

ρ2
dr dT − 4Ma r

ρ2
sin2 θ dψ dT

− 2 a

(
1 + 2Mr

ρ2

)
sin2 θ dr dψ + ρ2 dθ2 + � sin2 θ

ρ2
dψ2. (C2)

The Cartesian-like coordinates (x, y, z) associated with the spatial KS coordinates (r, θ , ψ) are defined as

x = sin θ (r cos ψ − a sin ψ),

y = sin θ (r sin ψ + a cos ψ),

z = r cos θ, (C3)

while the time coordinate T is taken to be the same in both systems.
In terms of these coordinates, the differential line element is

ds2 = −dT 2 + dx2 + dy2 + dz2 + 2Mr

ρ2

[
dT + (r x + a y)dx + (r y − a x)dy

r2 + a2
+ z dz

r

]2

. (C4)
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C1 Velocity transformations

By differentiating equation (C3) with respect to the coordinate time T, we obtain the following expressions for the velocity transformations:

ẋ = sin θ cos ψ ṙ + (r cos ψ − a sin ψ) cos θ θ̇ − (r sin ψ + a cos ψ) sin θ ψ̇, (C5)

ẏ = sin θ sin ψ ṙ + (r sin ψ + a cos ψ) cos θ θ̇ + (r cos ψ − a sin ψ) sin θ ψ̇, (C6)

ż = cos θ ṙ − r sin θ θ̇ , (C7)

where a dot denotes differentiation with respect to T. We can invert these expressions as

ρ2ṙ = r (x ẋ + y ẏ + z ż) + a2z ż

r
, (C8)

ρ2θ̇ = z (x ẋ + y ẏ + z ż) − r2ż√
r2 − z2

, (C9)

ψ̇ = x ẏ − y ẋ

x2 + y2
+ a r

ρ2

(
x ẋ + y ẏ

r2 + a2
+ z ż

r2

)
. (C10)

C2 Constants of motion

E = 	

{
1 − 2 M r

ρ2

[
1 + ẋ(r x + a y) + ẏ(r y − a x)

r2 + a2
+ z ż

r

]}
, (C11)

�z = 	

{
x ẏ − y ẋ − 2 M a r

(
x2 + y2

)
ρ2

(
r2 + a2

) [
1 + ẋ(r x + a y) + ẏ(r y − a x)

r2 + a2
+ z ż

r

]}
, (C12)

�2 = 	2

[
r2

(
ẋ2 + ẏ2 + ż2

) − (x ẋ + y ẏ + z ż)2 − 2 a(x ẏ − y ẋ) + a2

(
x2 + y2

r2 + a2
+ ẋ2 + ẏ2

) ]
+ a2z2

r2
, (C13)

where the Lorentz factor 	 is calculated from the expression of the metric in equation (C4) as

	 =
{

1 − ẋ2 − ẏ2 − ż2 − 2 M r

ρ2

[
1 + ẋ(r x + a y) + ẏ(r y − a x)

r2 + a2
+ z ż

r

]2
}−1/2

. (C14)

C3 Acceleration

The hydrodynamic terms in the evolution equation are given by

ẍ = − 1

	2� ω

[
∂P

∂x
+ ẋ

∂P

∂t
+ 2Mr

ρ2

(
ẋ + r x + a y

r2 + a2

)
A

]
, (C15)

ÿ = − 1

	2� ω

[
∂P

∂y
+ ẏ

∂P

∂t
+ 2Mr

ρ2

(
ẏ + r y − a x

r2 + a2

)
A

]
, (C16)

z̈ = − 1

	2� ω

[
∂P

∂z
+ ż

∂P

∂t
+ 2Mr

ρ2

(
ż + z

r

)
A

]
, (C17)

where

A = ∂P

∂t
− ∂P

∂x

(
r x + a y

r2 + a2

)
− ∂P

∂y

(
r y − a x

r2 + a2

)
− ∂P

∂z

z

r
. (C18)
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