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ABSTRACT
Solitary stars that wander too close to their galactic centres can become tidally disrupted, if
the tidal forces due to the supermassive black hole residing there overcome the self-gravity of
the star. If the star is only partially disrupted, so that a fraction survives as a self-bound object,
this remaining core will experience a net gain in specific orbital energy, which translates into
a velocity ‘kick’ of up to ∼103 km s−1. In this paper, we present the result of smoothed
particle hydrodynamics simulations of such partial disruptions, and analyse the velocity kick
imparted on the surviving core. We compare γ = 5/3 and γ = 4/3 polytropes disrupted in
both a Newtonian potential, and a generalized potential that reproduces most relativistic effects
around a Schwarzschild black hole either exactly or to excellent precision. For the Newtonian
case, we confirm the results of previous studies that the kick velocity of the surviving core
is virtually independent of the ratio of the black hole to stellar mass, and is a function of the
impact parameter β alone, reaching at most the escape velocity of the original star. For a given
β, relativistic effects become increasingly important for larger black hole masses. In particular,
we find that the kick velocity increases with the black hole mass, making larger kicks more
common than in the Newtonian case, as low-β encounters are statistically more likely than
high-β encounters. The analysis of the tidal tensor for the generalized potential shows that our
results are robust lower limits on the true relativistic kick velocities, and are generally in very
good agreement with the exact results.

Key words: black hole physics – hydrodynamics – relativistic processes – methods: numeri-
cal – galaxies: nuclei.

1 IN T RO D U C T I O N

The centres of most galaxies are hosts to supermassive black holes
(SMBHs) with masses ranging from ∼105 M� (Secrest et al. 2012)
to as much as a few ×1010 M� (van den Bosch et al. 2012). The
SMBH’s mass is comparable to the combined mass of all the stars
in the nucleus, and together they control the orbital dynamics of
individual stars. Various mechanisms (the most important being
two-body scattering; see e.g. Alexander 2005) may at times bring
one of the stars on to a nearly radial orbit that reaches the immedi-
ate vicinity of the SMBH, with the periapsis distance rp becoming
comparable to the tidal radius rt ≡ (Mbh/m�)1/3r� (Frank 1978). On
average, this happens at a rate of ∼10−5 yr−1 per galaxy (Magorrian
& Tremaine 1999; Wang & Merritt 2004). The strength of the en-
counter, quantified by the impact parameter β ≡ rt/rp, will ulti-
mately determine how much mass the star loses due to tidal inter-
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actions, whether it survives (β � 1) or is completely ripped apart
(β � 1) (Rees 1988).

Recent simulations by Manukian et al. (2013, henceforth MGRO;
see Manukian et al. 2014 for errata) showed that in partial disrup-
tions, in which a fraction of the star survives as a self-bound object,
the remaining core may receive a boost in specific orbital energy,
corresponding to a velocity ‘kick’ that can reach the surface es-
cape velocity of the original star, and may later on be observed as
a ‘turbo-velocity star’. The source of this increase in energy has
been linked to the asymmetry of the two tidal tails created during
the disruption process, which by conservation of linear momentum
boosts the velocity of the surviving core. This asymmetry (and the
velocity kick it induces) appears to be an inherent property of tidal
disruption events, and has also been observed in tidal disruptions
of planets (Faber, Rasio & Willems 2005), white dwarfs (Cheng &
Evans 2013) and neutron stars (Rosswog et al. 2000; Kyutoku, Ioka
& Shibata 2013).

In this paper, we extend the previous results by performing
smoothed particle hydrodynamics (SPH) simulations of tidal dis-
ruptions of solar-type stars by SMBHs. We use both a completely
Newtonian approach and one where the orbital dynamics around a
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Schwarzschild black hole is accurately reproduced by a generalized
potential (Tejeda & Rosswog 2013, henceforth TR). Apart from a
verification of the previous results with different numerical meth-
ods, our main goal is to quantify to which extent the relativistic
effects from a Schwarzschild black hole would impact on the final
velocities. The study of these events may contribute to the under-
standing of hypervelocity stars (HVSs; Hills 1988), which were
thought to result either from the tidal disruption of binary stars,
or by scattering off the stellar-mass black holes segregated in the
Galactic Centre (O’Leary & Loeb 2008). While these processes can
indeed impart velocities in excess of 103 km s−1 (Brown et al. 2005;
Antonini et al. 2010), most observed HVSs seem to have rather mod-
est velocities, typically around ∼400 km s−1 (e.g. Palladino et al.
2014; Zheng et al. 2014; Zhong et al. 2014). A number of HVSs
have even been observed on bound orbits around the Galactic Cen-
tre, but with sufficiently high velocities so as to constitute a distinct
population of velocity outliers (Brown et al. 2007). Tidal disrup-
tions of solitary stars may therefore yield sufficiently large kicks to
explain many of these HVSs, especially if the kicks are significantly
enhanced by relativistic effects.

2 M E T H O D

In our simulations, we use the Newtonian SPH code described in
detail by Rosswog, Ramirez-Ruiz & Hix (2009), with self-gravity
computed using a binary tree similar to that of Benz et al. (1990).
The tree accuracy parameter (i.e. the opening angle θ > HB/RAB

which controls whether a distant tree node B, of size HB and located
at a distance RAB from node A, is allowed to act as a multipole
source of gravity for node A or needs to be further resolved into
its constituents) was set to θ = 0.5, corresponding to an average
relative force error of �0.1 per cent. All simulations use 105 SPH
particles, unless otherwise stated (we verified the results via two
runs with 106 particles).

We model stars as polytropic fluids with γ = 5/3, which initially
satisfy the Lane–Emden equation for m� = 1 M� and r� = 1 R�.
It has long been known that γ = 5/3 polytropes are disrupted
at smaller βs than γ = 4/3 polytropes, which, being more cen-
trally condensed, are able to survive deeper encounters (see e.g.
Guillochon & Ramirez-Ruiz 2013). In order to compare our results
with those of MGRO, who used γ = 4/3, we also perform a few test
simulations in which the initial stellar profiles are given by γ = 4/3
polytropes, but the fluid, being gas-pressure dominated, reacts to
dynamical compressions and expansions according to a γ = 5/3
equation of state.

The black hole gravity is modelled with both the Newtonian
potential (‘�N’) and the generalized Newtonian potential (‘�TR’;
TR),

�TR(r, ṙ, ϕ̇) = −GMbh
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ṙ2 + r2ϕ̇2

]
,

(1)

where rs= 2 GMbh/c
2 is the Schwarzschild radius. The potential

is based on an expansion of the relativistic equations of motion in
the low-energy limit, without necessarily implying low-velocities
or weak field. It has been shown to reproduce essentially all relevant
orbital properties around a Schwarzschild black hole either exactly
or to a very high degree of accuracy.

In the TR potential, the specific relativistic orbital energy εTR is
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The self-bound mass is calculated using the iterative energy-based
approach described by Guillochon & Ramirez-Ruiz (2013, section
2.2), with the gravitational self-potential calculated using a fast
binary tree (Gafton & Rosswog 2011). The kick velocity of the
self-bound object (at infinity) is then computed as

vkick =
√

2(ε − ε0), (3)

where ε0 is the specific orbital energy of the initial star at the
beginning of the simulation, and ε is the specific orbital energy of
the self-bound remnant. This definition does not take into account
the underlying galactic gravitational potential, and therefore the
kick velocity is expected to decrease as stars ‘climb’ out of the
galactic potential.

Since we are only considering parabolic orbits, ε0 is approxi-
mately equal to zero, with small numerical deviations due to the
fact that only the centre of mass is on a truly parabolic orbit, since
we impart the same initial orbital velocity to all particles, while
starting with the star at an initial distance of 5 rt from the black
hole, instead of at infinity.

We simulate encounters with mass ratios q ≡ Mbh/m� in the
range 106 ≤ q ≤ 4 × 107, and impact parameters β in the range
0.6 ≤ β ≤ 0.9. For the γ = 4/3 runs, we use the same values of β and
q as MGRO, namely 1.0–1.8, and 103–106, respectively. The values
for β are chosen so that a self-bound core always survives, while
q is chosen so that the star is disrupted outside the Schwarzschild
radius of the SMBH.

A summary of all the simulations performed for this paper is
presented in Table 1.

3 R ESULTS

3.1 Disruption dynamics

The typical evolution of the stellar fluid during a partial tidal dis-
ruption is shown in Fig. 1. As it approaches periapsis, the star
is heavily spun-up and distorted, being stretched in the radial di-
rection, corresponding to the one positive eigenvalue of the tidal
tensor, and compressed in the azimuthal and vertical directions (see
Luminet & Carter 1986; see also Appendix A for a discussion on
the tidal tensor). As the star overfills its Roche lobe it starts to
shed mass through the Lagrangian points L1 and L2, forming a
bound and an unbound (to the SMBH) tail, respectively. As the
star is receding from the black hole, the tails and the core stop ex-
changing energy and angular momentum (i.e. the energies become
‘frozen-in’) and the core recollapses into a self-bound, spherical
object.

Fig. 2 shows the locations of the SPH particles in the time-
varying Roche potential with respect to the centre of mass of the
star (	Roche, see Appendix B for a derivation), calculated along the
radial direction (upper row) and contours of 	Roche in the orbital
plane (lower row). The formation of the two tidal tails is asymmetric
from the beginning (the star first overflows its Roche lobe through
L1), but it is most clearly seen in panel (d2). It is interesting to
observe that in panel (b2), representative of the star during the actual
disruption, the Roche potential is not aligned with the star, i.e. the
points through which the star sheds mass are not always aligned
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Table 1. Overview of the SPH simulations discussed in this paper, grouped into three categories: 59 core
simulations (1–59) with γ = 5/3 and 105 SPH particles, covering the entire range of q and β discussed
in the paper; 25 test simulations (60–84) with γ = 5/3 (of which 24 with 106 SPH particles, and 1 with
θ = 0.2); 21 test simulations (85–105) with γ = 4/3. For each simulation, we show the polytropic index
γ , the number of SPH particles Npart, the ratio q = Mbh/m�, the potential � (which is either the Newtonian
potential, �N, or the generalized Newtonian (TR) potential, �TR) and the impact parameter β = rt/rp.

Number γ Npart q � θ β

1–7 5/3 105 106 �N 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
8–16 5/3 105 106 �TR 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.88, 0.89, 0.90
17–23 5/3 105 4 × 106 �N 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
24–31 5/3 105 4 × 106 �TR 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.83, 0.84, 0.85
32–38 5/3 105 107 �N 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
39–45 5/3 105 107 �TR 0.5 0.60, 0.65, 0.70, 0.75, 0.77, 0.78, 0.80
46–52 5/3 105 4 × 107 �N 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
53–59 5/3 105 4 × 107 �TR 0.5 0.60, 0.65, 0.68, 0.70, 0.71, 0.72, 0.75

60–66 5/3 106 106 �N 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
67–73 5/3 106 106 �TR 0.5 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
74–75 5/3 106 4 × 106 �TR 0.5 0.83, 0.84
76 5/3 106 107 �N 0.5 0.70
77 5/3 106 107 �TR 0.5 0.70
78–83 5/3 106 4 × 107 �TR 0.5 0.60, 0.65, 0.67, 0.70, 0.71, 0.72
84 5/3 105 107 �TR 0.2 0.70

85 4/3 106 104 �TR 0.5 1.60
86 4/3 106 106 �TR 0.5 1.30
87–91 4/3 105 106 �TR 0.5 1.45, 1.55, 1.65, 1.75, 1.80
92–95 4/3 105 106 �N 0.5 1.45, 1.55, 1.65, 1.75
96–100 4/3 105 4 × 106 �N 0.5 1.10, 1.20, 1.30, 1.70, 1.80
101–105 4/3 105 4 × 106 �TR 0.5 1.10, 1.20, 1.30, 1.65, 1.70

Figure 1. Evolution of the stellar fluid during a typical, parabolic partial tidal disruption. The plot shows a cross-section of the density profile in the orbital
plane (z = 0). Here, Npart = 106, q = 107, β = 0.7 and � = �TR. The Schwarzschild radius (black disc), tidal radius (grey disc), geodesic trajectory of the
centre of mass in Schwarzschild space–time (dotted red line) and trajectory of the centre of mass obtained with the TR potential (dashed black line) are shown
to scale. Due to the spatial scales involved, we show the stellar debris magnified by a factor of 50 before periapsis passage (t ≤ 0) and magnified by a factor of
10 afterwards (t > 0). Note that due to relativistic periapsis shift the orbit is not a parabola.

with the instantaneous L1 and L2. This occurs because the orbital
time-scale of the system is shorter than the dynamical time-scale
on which the fluid can react to the extremely fast-changing Roche
potential (τ orb < τ dyn).

3.2 Self-bound mass

The self-bound mass fraction evolves during the disruption process,
and for a partial disruption it will decrease from 1 (before disruption,
when the entire star is self-bound) to the final value mcore/m�. In
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Figure 2. A typical, time-varying Roche potential in a partial tidal disruption exhibits a number of stages, shown here as snapshots at: (a) t ≈ −3.5 h before
periapsis passage, i.e. at the beginning of the simulation, when the star is self-bound; (b) t ≈ 20 min, just as the first particles exit the Roche lobe of the star
and start forming the tidal tails (bound tail first); (c) t ≈ 4 h, as the energy distribution of the debris starts to freeze and the core and tails approach their final
masses; (d) t ≈ 4 d after the disruption. This simulation used Npart = 105, q = 106, β = 0.65 and � = �N. Upper row. 	Roche(r), where r is the distance to
the SMBH. The values of 	Roche are given in code units and – to simplify axis labelling – are offset by the values shown in the upper-left corner of the panels.
Lower row. Contours of 	Roche(x, y) in the orbital plane, with the particles overplotted and coloured according to the value of the potential. All coordinate
axes use a global Cartesian coordinate system, with the SMBH always located at (0, 0, 0), and the stellar fluid moving along a parabolic orbit around it. In the
lower row, we are essentially ‘zooming in’ on the SPH particle distribution as it first approaches, and then recedes from the SMBH.

Figure 3. Left-hand panel. Evolution of the self-bound mass fraction in simulations using Newtonian (dashed lines) and TR (solid lines) potentials. Right-hand
panel. Final self-bound mass fraction in Newtonian (dashed lines) and TR (solid lines) simulations. The points corresponding to Newtonian runs are essentially
overlapping for all values of β, while those from pseudo-relativistic simulations show a strong dependence on q: the larger q is, the smaller the critical β

necessary for complete disruption is.

Fig. 3 (left-hand panel), we present the time-evolution of mcore for
the q = 106 simulations. The disruption is stronger in relativistic
encounters, with the deviation of the self-bound mass fraction from
the Newtonian case increasing with β, from ∼ few per cent (β = 0.6)
to ∼100 per cent (β = 0.9).

Fig. 3 (right-hand panel) shows the final self-bound mass fraction
as a function of β, for various ratios q and for both potentials. We ob-
serve that with the Newtonian potential stars are partially disrupted
in the range 0.6 � β � 0.9 regardless of q. This result is general for
all Newtonian disruptions of γ = 5/3 polytropes, and agrees with
the numerical findings of e.g. Guillochon & Ramirez-Ruiz (2013)

(βd necessary for complete disruption equal to 0.9). On the other
hand, for any given β the discrepancy between Newtonian and TR
simulations increases drastically for larger black hole masses, as rs

becomes comparable to rp and relativistic terms in the tidal tensor
close to periapsis can no longer be ignored (see Appendix A).

3.3 Kick velocity

The kick velocity is computed from the increase in specific or-
bital energy (ε − ε0) of the self-bound core using equation (3).
In Fig. 4, we present vkick both as a function of time for the
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Figure 4. Left-hand panel. Evolution of the kick velocity of the self-bound remnant in Newtonian (dashed lines) and TR (solid lines) simulations. The kick
velocity is normalized by the surface escape velocity of a solar-type star, ≈617 km s−1. The lines show a moving average of the data points in order to smooth
out fluctuations during the disruption process (before the surviving remnant becomes relaxed, i.e. approximately during t = 0 and t = 1). Right-hand panel.
Kick velocity of the self-bound remnant at infinity, in Newtonian (dashed lines) and TR (solid lines) simulations. The solid black line (q = 4 × 107, � = �TR)
stands out, as for low values of β it surprisingly falls both below the runs with smaller q, and below the Newtonian run. We have repeated this set of simulations
with higher resolution (106 SPH particles), but the results were very similar. Since these are highly relativistic encounters, further studies with even higher
resolution and an exact relativistic treatment of the black hole gravity are probably required in order to arrive at a definitive answer..

q = 106 simulations (left-hand panel), and its final value at the
end of the simulation (right-hand panel). The kick velocities are
always scaled to the surface escape velocity of the original star,√

2GM�/R� ≈ 617 km s−1, as they are expected to be compara-
ble on theoretical grounds (see Manukian et al. 2013).

We initially place the star at 5 rt, and observe that numerical de-
viations from ε0 = 0 (i.e. parabolic trajectory) of the initial specific
energy increases with q, and is larger for the TR potential. For the
most extreme case (q = 4 × 107, β = 0.9, �TR), the initial energy
was of the order of ∼10−8c2 (which is to be compared with the typi-
cal ‘kick’ specific energy, ∼10−6c2), while for the other simulations
it was between one and three orders of magnitude smaller (for the
TR and Newtonian potentials, respectively). Nevertheless, there is
a clear distinction between the Newtonian runs, where the kick is
fairly independent of q, and the TR runs, where the curves exhibit
an asymptotic behaviour limited by progressively smaller βs with
larger q’s.

The time evolution of ε and – consequently – of vkick exhibits
significant oscillations during the actual disruption (∼ hours from
periapsis passage) that appear as wiggles in Fig. 4. The explanation
is likely related to the complicated hydrodynamic effects that take
place in that short period of time. Due to the extreme compression
of the star, shock waves travel throughout the star and transfer
significant energy and angular momentum between the particles,
and until the energies become frozen-in, the average specific energy
of the bound core keeps oscillating.

Fig. 5 shows the kick velocity as a function of the self-bound
mass fraction mcore. We notice that in contrast to the findings of
MGRO, in some simulations the kick velocity exceeds the escape
velocity of the initial star, but only when the value of mcore is suf-
ficiently small. Indeed, vkick(mcore) seems to be a monotonic func-
tion that asymptotically approaches 0 for mcore → m� and +∞ for
mcore → 0.

Fig. 6 shows the kick velocity as a function of the mass differ-
ence between the two tidal tails, �m12 (Fig. 6, left- and right-hand
panels, for Newtonian and TR potentials, respectively). The two
plots exhibit similar behaviours (vkick increases with �m12), but in
the relativistic simulations the degeneracy in q is broken (i.e. the

Figure 5. The kick velocity vkick of the self-bound remnant shows a re-
markable dependence on the self-bound mass fraction in both Newtonian
(blue points) and TR (red points) simulations. We fitted a truncated power
law of the form y = Ax−a(1 − x2)b, with the fit parameters A = 0.634 726,
a = 0.196 598, b = 0.882 387. The shaded grey area around the black fit line
represents the 1σ deviation from the fit. Darker points correspond to higher
values of β.

data points for a given β are not clustered together irrespective of
q), since the relativistic kicks are sensitive to both β and q.

We also show vkick as a function of β for the γ = 4/3 simulations
(Fig. 7), together with the fit line given by MGRO. These simu-
lations show reasonable similarity to the results of MGRO, and –
as expected – for such small values of q (103 to 106) there is little
difference between Newtonian and TR simulations. The data points
from our simulations give slightly smaller kicks than the fit, but the
general trend (and critical β) are nevertheless recovered.

3.4 Error estimation and resolution dependence

Since in this paper we are concerned with parabolic encounters, we
have calculated the TR acceleration for particles on parabolic orbits.
It turns out that the TR potential reproduces parabolic orbits exactly
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Figure 6. Kick velocity of the self-bound remnant as a function of the mass difference �m12 between the tidal tails in Newtonian (left-hand panel) and TR
(right-hand panel) simulations. The value of β is colour-coded. The relativistic results do not exhibit such a strong relation between β, �m12, and vkick as in
the case of the Newtonian potential, but they still obey the general trend (vkick increases with �m12) and even the shape of the function.

Figure 7. The results of our SPH simulations of γ = 4/3 polytropes, using
Npart = 105 in Newtonian (black circles) and TR (red squares) potentials,
and using Npart = 106 with the TR potential (red triangles), as compared to
the fit line given by MGRO for their γ = 4/3 simulations. Our runs use the
same values for q as in their paper (103–106), and for this reason relativistic
effects are small.

(see TR; in our simulations, these would be the orbits of the centre
of mass). In Fig. 8, we show the tidal deformation experienced by
test particles placed on a ring of radius 4 R� with the centre fol-
lowing a parabolic orbit with β = 1.6 around a 107 M� black hole.
The deformation of the ring provides a visual representation of the
effects of the tidal tensor, and by eye it appears to be identical in
Schwarzschild and �TR. In Appendix A, we calculate in detail the
components and the eigenvalues of the tidal tensor in Schwarzschild
and both Newtonian and TR potentials, and show that the eigenval-
ues λ2 and λ3 (corresponding to compression in the orbital plane
and perpendicular to it, respectively) provided by the TR poten-
tial for parabolic orbits are the same as in Schwarzschild (with λ3

having an identical expression, and λ2 having a slightly different
expression that still gives the same result within machine precision
for our range of parameters), while the maximum relative error in λ1

(corresponding to expansion in the radial direction) is 6.4 per cent,
occurring at periapsis for a very narrow range of βs. In general, the
average error in λ1 at periapsis is of the order of ∼ a per cent, and
quickly drops farther away from the black hole. We also show that
both the Newtonian and the TR potentials always underestimate the

values of λ1 and λ2, which means that all disruptions will be slightly
stronger in the Schwarzschild space–time, leaving a smaller self-
bound core and resulting in even larger velocity kicks. Therefore,
our results are robust lower limits on the true relativistic effects.

We have also performed a number of test simulations with higher
resolution. For q = 106, we ran all simulations with both 105 and
106 SPH particles; a comparison of the resulting kick velocities is
presented in Fig. 9. The most striking observation is that resolution is
crucial at low β (∼0.6), where the mass asymmetry between the two
tidal tails, which drives the kick, is extremely small, � 10−2 m�. This
mass loss must be properly resolved in order for the kick effect to
be accurately captured; we observe the low-resolution simulations
greatly underestimate the kick for β = 0.6, due to more energy
being deposited into the oscillation modes of the star. Resolution is
also important, though not as crucial, at high β (∼0.9), where the
surviving core itself is of the order of ∼10−2 m�, and must also be
properly resolved; we observe that here the discrepancy between
�N and �TR is less extreme for the higher resolution simulations,
but this is simply because �TR leaves a small surviving core, which
is not resolved by the low-resolution simulations. For intermediate
values of β, where both the core and the mass difference of the tails
are a generous fraction of the initial stellar mass, lower-resolution
simulations agree to a reasonable accuracy (∼ few per cent) with
the results obtained with the 106 particles simulations.

For q = 107, we ran the simulation with β = 0.7 with various
numbers of SPH particles Npart and tree opening angles θ : for �N,
Npart = 105 and Npart = 106 (both with θ = 0.5), and for �TR,
Npart = 105 (θ = 0.2, 0.5), and Npart = 106 (θ = 0.5). We observe
that improving the force accuracy above θ = 0.5 does not have a
significant impact on the final kick velocity (at most ∼1 per cent),
while increasing the number of particles ten times does change it
by up to ∼10 per cent, for both potentials. In addition, the evolu-
tion of εkick during the disruption process is highly dependent on
the resolution, with larger wiggles in the high-resolution simula-
tions, presumably due to the fact that shocks are better resolved
and therefore less dissipative, and there is significantly more energy
transfer between the particles. Still, the difference between the kick
velocities of the Newtonian and TR potentials is consistently and
significantly larger than the variations that appear when changing
the accuracy parameters for the same potential.

For γ = 4/3, we ran two additional simulations with Npart = 106

and � = �TR, using q = 104, β = 1.6 and q = 106, β = 1.3. The
kicks obtained in these higher-resolution simulations are shown in
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Figure 8. Visual representation of the tidal deformation experienced by a ring of particles of radius 4 R� (representing a star disrupted on a parabolic
orbit with β = 1.6 by a SMBH with q = 107) in Schwarzschild space–time (red), the TR potential (blue) and the Newtonian potential (green). The rings in
Schwarzschild space–time and the TR potential are indistinguishable from each other by eye, which is an indication that �TR reproduces the Schwarzschild
tidal tensor to a very good accuracy (see Appendix A for a further discussion). Unlike in the Newtonian case, where the shape of the rings would not change
significantly after they exit the tidal radius, the other two rings become increasingly deformed due to the different periapsis shifts of their component particles
(the TR potential reproduces the periapsis shift exactly).

Figure 9. Left-hand panel. Kick velocity as a function of impact parameter β, obtained with lower (Npart = 105; black lines) and higher (Npart = 106; red
lines) resolution simulations, representing both �N (dashed lines) and �TR (solid lines) encounters. Resolution appears to be critical at low β (∼0.6), where
the mass asymmetry of the two tails must be properly resolved in order to extract an accurate kick velocity (nevertheless, at both resolutions there is a clear
trend of higher kick velocities in the relativistic case, compared to the Newtonian case). For the central part of the range, simulations with the two resolutions
agree to within ∼1 per cent. At large β, close to the critical impact parameter (∼0.9), the two results agree for � = �N, but for the TR encounter the 106

particles simulation results in no surviving core, while the 105 particles simulation still yields a small self-bound mass that acquires all the energy, resulting in
a very large kick. Right-hand panel. Time evolution of the kick velocity for q = 106, � = �TR and Npart = 105 (dashed lines) and Npart = 106 (solid lines).
The different colours represent different values of β. The best agreement between the kick velocities is achieved in the region of intermediate β, where both
the mass asymmetry of the two tails and the surviving core are resolved in the lower-resolution runs. Since a significant fraction of the star survives for low βs,
it is very expensive to run these simulations with high resolution, and therefore they were stopped at an earlier physical time than the high β simulations.

Fig. 7 with red squares, and are in good agreement with both the fit
given by MGRO and the rest of the points from our simulations.

4 D ISCUSSION

We have confirmed by a different numerical method (SPH versus
the adaptive mesh refinement code FLASH that is primarily used

by MGRO) that all Newtonian simulations with the same impact
parameter β produce similar self-bound remnants (in mass, spe-
cific energy and kick velocity), confirming earlier conclusions by
Manukian et al. (2013) that vkick is virtually independent of the mass
ratio q.

We compared these calculations with simulations that use a gen-
eralized potential that accurately captures the dynamics around a
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Schwarzschild black hole. Unlike Newtonian tidal disruptions, we
observe that relativistic disruptions are no longer fully described
by the parameter β. Instead, relativistic effects related to the tidal
tensor become important when the periapsis distance is comparable
to the Schwarzschild radius, i.e. they depend on the ratio

� ≡ rs

rp
= β

m�

r�

q2/3 2G

c2
≈ 0.2 × β

5

(
r�

R�

)−1
m�

M�
( q

106

)2/3
.

(4)

For a given mass ratio q, this can be interpreted as a dependence
on β (e.g. for q = 106, relativistic effects become important when
β � 5, as noticed by e.g. Laguna et al. 1993), which will however
change with q (for q = 107 relativistic effects are extremely im-
portant even for β � 1), since the gravitational radius and the tidal
radius have different dependencies on Mbh. In general, we observe
that relativistic effects can be ignored for � � 10−2 (where the
relativistic and the Newtonian tidal tensor are essentially the same,
and relativistic effects such as periapsis shift are negligible on the
time-scale of the disruption), but tend to dominate the outcome of
the encounter for � � 0.1. These thresholds can also be observed
in Fig. A1 in the Appendix A, where we see that in a typical tidal
disruption the eigenvalues of the tidal tensor are virtually identi-
cal in Newton and Schwarzschild for r � 30 rs, and start to differ
significantly from each other for r � 10 rs (the exact values will of
course depend on the parameters of the encounter).

We therefore expect relativistic effects on the kick velocity of
turbo-velocity stars to be significant for larger black hole masses.
In particular, since these objects will only result from partial dis-
ruptions (0.6 � β � 0.9, with the more pronounced velocity kicks
at the higher end of this range), relativistic effects should dominate
for � � 0.1, or, from equation (4), for

q � 4.2 × 106

(
m�

M�

)−3/2 (
r�

R�

)3/2

. (5)

This means that for a solar-type star disrupted in our Galactic Centre
relativistic effects may be important. In Fig. 4, we observe that for
q = 4 × 106 the TR potential will yield the same kick velocity
as the Newtonian potential at an ∼5 per cent smaller β. Since tidal
disruption rates scale with ∼β−2 we estimate that approximately
∼10 per cent more stars will have a given kick velocity compared
to a Newtonian estimation.

Previous estimations by Kesden (2012a,b) predict that the spin
of the black hole may alter the spread in energy by up to a fac-
tor of ∼2. If one were to anticipate the relativistic effects due to
the black hole spin, one would therefore expect a maximum of
∼40 per cent increase in the kick velocity, depending on the spin
and orbit orientation, though a methodical study of such effects is
left for subsequent investigations.

To conclude, we have found that the critical β necessary for
the disruption of the star is highly dependent on q as long as
� � 10−2, with the star being completely disrupted at a β of around
0.9 (q = 106), 0.85 (q = 4 × 106), 0.8 (q = 107), 0.72 (q = 4 × 107),
due to the proximity to the event horizon (� ≈ 0.04, 0.09, 0.16 and
0.36, respectively). This implies that the higher q is, the smaller the
span of βs in which partial disruption will occur, and the steeper
the dependence of the surviving core’s mass, mcore on β is (Fig. 3).
Since we have also shown that there is a very clear, monotonic
relation between mcore and the kick velocity vkick imparted to the
core (Fig. 5), we conclude that – in Schwarzschild space–time –
heavier black holes are able to impart larger kick velocities without
requiring very deep encounters.
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A P P E N D I X A : D E R I VAT I O N O F T H E T I DA L
G R AV I TAT I O NA L FI E L D
F O R T H E T R P OT E N T I A L

In this appendix, we provide explicit expressions for the tidal ten-
sor corresponding to the TR potential and quantify its departure
from the exact relativistic result in Schwarzschild space–time. The
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acceleration exerted on a given test particle under the TR potential
is given by (Tejeda & Rosswog 2013)

ẍi = −GMbhxi

r3

(
1 − rs

r

)2
+ rsẋi ṙ

r(r − rs)
− 3

2

rsxi ϕ̇2

r
, (A1)

where xi = {x, y, z} and r, ṙ and ϕ̇ should be taken as implicit
functions of the Cartesian coordinates satisfying

r2 = x2 + y2 + z2, (A2)

r ṙ = x ẋ + y ẏ + z ż, (A3)

r4ϕ̇2 = (x ẏ − y ẋ)2 + (x ż − z ẋ)2 + (z ẏ − y ż)2. (A4)

We now consider a star approaching the central black hole. The
centre of mass of the star is located at x0 and follows, to a very
good approximation, the trajectory of a free-falling test particle.
We can compute the tidal forces acting on a fluid element located
at a generic position x within the star by taking the Taylor series
expansion of equation (A1) around x0, i.e.

ẍi = fi(x, ẋ) 
 fi |(x0, ẋ0) + (x − x0)j
∂fi

∂xj

∣∣∣∣
(x0, ẋ0)

+ (ẋ − ẋ0)j
∂fi

∂ẋj

∣∣∣∣
(x0, ẋ0)

, (A5)

where the Einstein summation convention is used. Next we substi-
tute ξ = x − x0 into equation (A5) and find that, to first order in ξ

and ξ̇ , the acceleration acting on a fluid element due to the central
black hole as seen from the centre of mass of the star is given by

ξ̈i = ξjCij |(x0, ẋ0) + ξ̇j C̃ij |(x0, ẋ0), (A6)

with the tidal tensors Cij and C̃ij given by

Cij ≡ ∂fi

∂xj

= −GMbh

r3

(
1 − rs

r

)2
[
δij −

(
3 r − 5 rs

r − rs

)
xi xj

r2

]

+ rsẋi ẋj

r2(r − rs)

[
δij −

(
3 r − 2 rs

r − rs

)
ṙ xj

r ẋj

]

− 3 rs

2 r
ϕ̇2

(
δij − 5 xi xj

r2

)
− 3 rsxi

r5

(
xjv

2 − r ṙ ẋj

)
, (A7)

C̃ij ≡ ∂fi

∂ẋj

= rs

(
r ṙ δij + xj ẋi

)
r2(r − rs)

− 3 rsxi

r4

(
r ẋj − ṙ xj

)
, (A8)

where δij is the Kronecker delta symbol and v2 = ẋ2 + ẏ2 + ż2.
Now we would like to compare the results in equations (A7)

and (A8) with the corresponding exact relativistic expressions. It
is customary to express the tidal tensor in Schwarzschild space–
time by adopting the so-called Fermi normal coordinates cen-
tred on the approaching star (see e.g. Marck 1983; Brassart &
Luminet 2010). Nevertheless, for consistency with the approach
that we have adopted here, we need to calculate the tidal field us-
ing Schwarzschild coordinates (i.e. in the global reference frame
centred on the black hole). The starting point is then the full-
relativistic expression for the acceleration acting on a test particle
in Schwarzschild space–time

ẍi = −GMbhxi

r3

(
1 − rs

r

)
+ rsẋi ṙ

r(r − rs)
+ rsxi ṙ2

2(r − rs)r2
− rsxi ϕ̇2

r
.

(A9)

Following the same steps leading to equation (A6), it is found that
the tidal tensors are now given by

CS
ij = −GMbh

r3

(
1 − rs

r

) [
δij −

(
3 r − 4 rs

r − rs

)
xi xj

r2

]

+ rsẋi ẋj

r2(r − rs)

[
δij + ṙ xi

r ẋi

−
(

3 r − 2 rs

r − rs

)
ṙ xj

r ẋj

]

+ rsṙ
2

2 r2(r − rs)

[
δij −

(
5 r − 4 rs

r − rs

)
xi xj

r2

]

− rs

r
ϕ̇2

(
δij − 5 xi xj

r2

)
− 2 rsxi

r5

(
xjv

2 − r ṙ ẋj

)
, (A10)

C̃S
ij = rs

(
r2ṙ δij + xj xi ṙ + r xj ẋi

)
r3(r − rs)

− 2 rsxi

r4

(
r ẋj − ṙ xj

)
,

(A11)

where the superscript ‘S’ is used to indicate that the quantity has
been calculated in Schwarzschild space–time.

The eigenvalues of the tidal tensor Cij give pertinent physical
information about the amount of compression or expansion that the
stellar matter experiences due to the black hole along the direction
of the principal axes of the tidal tensor. These eigenvalues can be
found by following the standard procedure of diagonalizing Cij. In
particular, if we choose a global reference frame XYZ such that
the trajectory followed by the centre of mass of the star coincides
with the XY plane (which is always possible due to the spherical
symmetry of the present problem), the corresponding eigenvalues
are given by

λ1,2 = 1

2

[
C11 + C22 ±

√
(C11 + C22)2 − 4 (C11C22 − C12C12)

]
,

λ3 = C33. (A12)

Equivalent expressions are found for λS
i by substituting CS

ij instead
of Cij into equation (A12).

In Fig. A1, we compare the eigenvalues in equation (A12)
with the corresponding relativistic values λS

i for a parabolic tra-
jectory with h = 5 rsc (which represents a β 
 1 encounter be-
tween a solar-type star and a 106 M� black hole). As a reference to

Figure A1. Comparison of the eigenvalues of the tidal tensor as obtained in
Schwarzschild space–time (solid lines), for the TR potential (dashed lines)
and for the Newtonian potential (dotted lines). In this case, we have taken
a parabolic encounter with h = 5 rsc, corresponding to a β 
 1 encounter
between a solar-type star with a 106 M� central black hole.
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Figure A2. Contours of the maximum relative error with which the eigen-
value of the tidal tensor λ1 (equation A12) reproduces the exact relativis-
tic value λS

1 as a function of the impact parameter β and the mass ratio
q = Mbh/m�.

illustrate the importance of relativistic effects, we have also plotted
the corresponding Newtonian values (Brassart & Luminet 2008)

λN
1 = 2 GMbh

r3
, λN

2 = λN
3 = −GMbh

r3
. (A13)

In this figure and for any other parabolic encounter, the eigenvalue
λ3 coincides exactly with the corresponding relativistic result. More
specifically, for a parabolic trajectory with angular momentum h, it
is found that

λ3 = λS
3 = −GMbh

r3

(
1 − rs

r

)2
(

1 + 3 h2

r2c2

)
. (A14)

This means that tidal compression along the vertical direction is
reproduced exactly by the TR potential for parabolic encounters. On
the other hand, it is also apparent from Fig. A1 that the eigenvalues
λ1 and λ2 provide a good approximation to the exact relativistic
values. In a practical simulation, the maximum departure of the tidal
field corresponding to the TR potential from the relativistic result
is reached at the periapsis of the incoming trajectory. In Fig. A2,
we show the contours of the maximum relative error for λ1 (i.e.
(λS

1 − λ1)/λS
1) as a function of the impact parameter β and the mass

ratio q = Mbh/m�. From this figure, we see that expansion due to the
tidal tensor is reproduced by the TR potential with a precision better
than 6.4 per cent. Finally, the relative error for λ2 at periapsis was
found to be consistently zero within machine precision (≈10−15) for
the parameter values shown in Fig. A2. This appears to contradict

the fact that λTR
2 deviates from λS

2 at r ∼ 2rs in Fig. A1, but note
that the maximum error occurs at pericentre, which in Fig. A1 is at
r ∼ 24rs, and that the curves shown there will change with β.

A P P E N D I X B : T H E RO C H E POT E N T I A L
F O R N O N - C I R C U L A R O R B I T S

The Roche lobe is defined in the context of the so-called restricted
three-body problem, where a test particle moves in the potential of
two orbiting masses. It is bounded by the critical equipotential sur-
face of the effective potential �eff (r), incorporating inertial forces
in the coordinate frame that is comoving and corotating with the star
(Sepinsky et al. 2007). In such a non-inertial frame, the expression
for the effective potential reads

�eff (r) = �∗(r) + �bh(r) − (r − r∗) · ∇∗�bh(r∗)

−1

2
|ω(r) × (r − r∗)|2. (B1)

Here, r∗ is the current instantaneous position of the centre of mass
(CoM) of the star, ∇∗ is the gradient with respect to r∗, ω(r) is
the angular velocity at the position r . The first two terms in this
expression, �∗(r) and �bh(r), represent the gravitational potentials
of the star and the black hole, respectively; in our simulations, the
former is computed with the tree, while the latter can be either
�N or �TR. The third term appears because our reference frame
is comoving with the star. It produces uniform acceleration, equal
and opposite to the one of the CoM of the star. The last term is the
centrifugal potential due to stellar rotation.

If we use point particle Newtonian potentials for the black hole
and the star, the effective potential becomes

�eff (r) = −Gm∗
r

− GMbh

r
− GMbh

r3∗
r∗ · (r − r∗)

−1

2
|ω(r) × (r − r∗)|2. (B2)

The choice of angular velocity ω in the effective potential depends
on how the star is rotating and is not very clearly defined in the post-
disruption phase. Therefore, in Fig. 2, for the contours of �eff (r)
(dashed black lines) we adopt an average angular velocity 〈ω〉 =

1
Npart

∑
a ωa (where a is the particle index), while for the colours

of individual particles we use the values of the individual angular
velocities ωa.
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