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Tidal disruptions are astrophysical events in which a star that ap-
proaches a supermassive black hole too closely is ripped apart by tidal
forces. The resulting stream of stellar fluid falls back towards the hole,
circularizes into an accretion disc, and gives rise to a bright transient.
In this thesis we present a new method for simulating such events
under the framework of general relativity, but at a very reduced
computational cost. We apply this method to study how relativistic
effects such as periapsis shift and Lense–Thirring precession affect the
outcome of a tidal disruption.
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Abstract
Solitary stars wandering too close to the supermassive black hole at the centre of their galaxy may become tidally disrupted,
if the tidal forces due to the black hole overcome the self-gravity holding the star together. Depending on the strength of the
encounter, the star may be partially disrupted, resulting in a surviving stellar core and two tidal arms, or may be completely
disrupted, resulting in a long and thin tidal stream expected to fall back and circularize into an accretion disc (the two cases
are illustrated on the cover of this thesis).

While some aspects of a tidal disruption can be described analytically with reasonable accuracy, such an event is the
highly non-linear outcome of the interplay between the stellar hydrodynamics and self-gravity, tidal accelerations from
the black hole, radiation, potentially magnetic fields and, in extreme cases, nuclear reactions. In the vicinity of the black
hole, general relativistic effects become important in determining both the fate of the star and the subsequent evolution
of the debris stream.

In this thesis we present a new approach for studying the relativistic regime of tidal disruptions. It combines an exact
relativistic description of the hydrodynamical evolution of a test fluid in a fixed curved spacetime with a Newtonian
treatment of the fluid's self-gravity. The method, though trivial to incorporate into existing Newtonian codes, yields very
accurate results at minimal additional computational expense.

Equipped with this new tool, we set out to systematically explore the parameter space of tidal disruptions, focusing on
the effects of the impact parameter (describing the strength of the disruption) and of the black hole spin on the morphology
and energetics of the resulting debris stream. We also study the effects of general relativity on partial disruptions, in order
to determine the range of impact parameters at which partial disruptions occur for various black hole masses, and the
effects of general relativity on the velocity kick imparted to the surviving core. Finally, we simulate the first part of a
tidal disruption with our code and then use the resulting debris distribution as input for a grid-based, general relativistic
magnetohydrodynamics code, with which we follow the formation and evolution of the resulting accretion disc.
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Summaries

Summa

Solivagae stellae, quae ad valde magnum cavum nigrum in centro galaxiae suarum
proxime concurrunt, dirumpantur si vires aestuosae debitae cavo nigro viribus inter-
nas gravitates quas stellam nexam sustinent superent. Debili concursione stella in
futurum stellare cor caudasque duas aestuosas partialiter dirumpitur vel forti con-
cursione stella integra in longum subtilemque fluxum dirumpitur. Hunc redire et
circularem fieri exspectatur. Utrique casus fronte huius libri illustrati sunt.

Etsi aliquae quaestiones methodis analyticis recte fere tractarentur, talis diruptio
nonlinearis cumulatarum actionum exitus est: stellaris hydrodynamica gravitasque
interna, acceleratio aestuosa debita cavo nigro, radiatio forteque campus magneticus
et, in extremis, reactiones nucleares. In proximitate cavi nigri relativitas generalis tam
fato stellae quam sequente evolutione fluxus stellaris insignis fit.

In hoc libro novammethodum studii diruptionum aestuosarum cum relativitate
generali praebemus. Ea descriptionem exactam evolutionis hydrodynamicae fluidi
in fixo curvoque spatiotempore cumnewtoniensem descriptionem stellaris gravitatis
internae combinat. Haec methodus etsi facile includi in codicibus newtoniensibus
existentibus, tamen rectos fructus cum minimis additis computis producit.

Hoc novo instrumento parati, ad ordinata studia spatii parametrorum dirup-
tionum aestuosarum, praesertim ad explorationem effectus parametri impacti (de-
scribentis vim diruptionis) rotationisque cavi nigri super morphologia energiaque
fluxus stellaris proficiscimur. Studemus etiam effectus relativitatis generalis in partia-
libus diruptionibus, ut definiamus intervallum parametrorum impacti ubi partiales
diruptiones occurrunt cum diversis ponderibus cavorum nigrorum, itemque effec-
tus in velocitate collisionis impertiti futuro stellari cordi. Tandem primam partem
diruptionis aestuosae simulamus cum codice nostro postque consequentemdistribu-
tionem stellaris materiae ut initus alterius codicis relativitatis generalis, magnetohy-
drodynamicae utimur, quo formationem evolutionemque consequentis accretionis
disci exsequimur.
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Abstract

Solitary stars wandering too close to the supermassive black hole at the centre of
their galaxy may become tidally disrupted, if the tidal forces due to the black hole
overcome the self-gravity holding the star together. Depending on the strength of
the encounter, the star may be partially disrupted, resulting in a surviving stellar core
and two tidal arms, ormay be completely disrupted, resulting in a long and thin tidal
stream expected to fall back and circularize into an accretion disc (the two cases are
illustrated on the cover of this thesis).

While some aspects of a tidal disruption can be described analytically with reas-
onable accuracy, such an event is the highly non-linear outcome of the interplay
between the stellar hydrodynamics and self-gravity, tidal accelerations from the black
hole, radiation, potentially magnetic fields and, in extreme cases, nuclear reactions.
In the vicinity of the black hole, general relativistic effects become important in
determining both the fate of the star and the subsequent evolution of the debris
stream.

In this thesis we present a new approach for studying the relativistic regime of
tidal disruptions. It combines an exact relativistic description of the hydrodynamical
evolution of a test fluid in a fixed curved spacetime with a Newtonian treatment
of the fluid’s self-gravity. The method, though trivial to incorporate into existing
Newtonian codes, yields very accurate results at minimal additional computational
expense.

Equipped with this new tool, we set out to systematically explore the parameter
space of tidal disruptions, focusing on the effects of the impact parameter (describing
the strength of the disruption) and of the black hole spin on the morphology and
energetics of the resulting debris stream. We also study the effects of general relativity
on partial disruptions, in order to determine the range of impact parameters atwhich
partial disruptions occur for various black hole masses, and the effects of general
relativity on the velocity kick imparted to the surviving core. Finally, we simulate
the first part of a tidal disruption with our code and then use the resulting debris
distribution as input for a grid-based, general relativistic magnetohydrodynamics
code, with which we follow the formation and evolution of the resulting accretion
disc.

Sammanfattning

En ensam stjärna som råkar komma för nära det supermassiva svarta hålet i centrum
av sin galax riskerar att slitas sönder. Detta händer om och när tidvattenkrafterna
från det svarta hålet blir starkare än stjärnans egen gravitation. I vissa fall blir stjärnan
endast ofullständigt söndersliten så att dess kärna överlever medan resten av stjärn-
materien dras ut i två långa armar. I de fall stjärnan blir fullständigt söndersliten blir
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dess spillror till en lång ström av gas som faller in i en cirkulär bana och bildar en
ackretionsskiva kring det svarta hålet. (De två fallen illustreras på omslagsbilden av
denna avhandling.)

Vissa aspekter av dessa våldsamma fenomen kan beskrivas någorlunda med ana-
lytiska metoder. Men tidvattenssönderslitningen av en stjärna är en mycket kompli-
cerad process med ett ickelinjärt samspel mellan stjärnans hydrodynamik och själv-
gravitation, tidvattenaccelerationen från det svarta hålet, elektromagnetisk strålning,
magnetfält och – i extrema fall – kärnreaktioner. Dessutom blir allmänrelativistiska
effekter viktiga i närheten av det svarta hålet och avgörande för stjärnans öde samt
den utvecklingen av den resulterande gasströmmen.

I denna avhandling presenteras ett nytt sätt att studera den relativistiska do-
mänen av tidvattenssönderslitningar. Metoden kombinerar en exakt relativistisk be-
skrivning av den hydrodynamiska utvecklingen av ett test-fluidum i en rumtid med
fix krökningmedan fluidumets självgravitation behandlas enligt newtonskmekanik.
Metoden, somär trivial att inkorporera i existerandenewtonska datorkoder, germyc-
ket precisa resultat med ett minimum av extra beräkningskostnad.

Med hjälp av det nya verktyget utforskas parameterrymden för tidvattenssön-
derslitningar av stjärnor på ett systematiskt sätt. Fokus ligger på effekterna på den
resulterande strömmen av spillror av impakt-parametern (som avgör förloppets styr-
ka) liksom av det svarta hålets rotation. Allmänrelativistiska effekter vid ofullständi-
ga sönderslitningar studeras också, med målet att fastställa det intervall av impakt-
parametrar vid vilka sådana inträffar för olika massor på det svarta hålet. Slutligen
används koden till att simulera den första fasen av en tidvattenssönderslitning. Den
resulterande fördelningen av stjärnspillrorna används sedan som indata till en all-
mänrelativistisk magnetohydrodynamisk datorkod med vilken vi följer bildningen
och utvecklingen av en ackretionsskiva.

Zusammenfassung

Einsame Sterne, die zu nah an einem riesigen Schwarzen Loch in der Mitte ihrer
Galaxie wandern, können gezeitenhaft zerstört werden, falls die Gezeitenkräfte des
Schwarzen Lochs stärker sind, als die Selbstgravitation, die den Stern zusammen-
hält. Abhängig von der Stärke der Begegnung, der Stern kann entweder nur teilweise
zerstört werden, ein stellarer Kern und zwei Gezeitenarme hinterlassend; oder kann
vollständig zerstörtwerden, in ein langer, schmaler gezeitenhaftiger Strom erfolgend,
von dem man den Rückfall und Zirkularisation in einer Akkretionsscheibe erwartet
(beide Fälle sind auf das Deckblatt dieser These bebildert).

WährendeinigeErscheinungen einer gezeitenhaftigenZerstörung analytischmit
angemessenerGenauigkeit beschreibt werden können, so ein Ereignis ist das höchste
nichtlineare Ergebnis eines Zusammenspiels zwischen stellarer Hydrodynamik und
Selbstgravitation, gezeitenhaftiger Beschleunigung vom Schwarzen Loch her, Strah-
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lung, möglicherweise Magnetfelder und, in äußerste Fälle, Kernreaktionen. In der
Umgebung des Schwarzen Lochs, allgemeine relativistische Effekte werden wesent-
lich in der Bestimmung sowohl des Schicksals des Sterns als auch die darauffolgende
Entwicklung des Trümmerstroms.

In dieser Behauptung tragen wir einen neuen Ansatz für das Studium des relati-
vistischen Regimes vonGezeitenstörung vor. Es verbindet eine genaue relativistische
Beschreibung einerhydrodynamischenEntwicklung einerTestflüssigkeit in einer fest
gewölbten Raumzeit mit einer Newtonschen Behandlung der Selbstgravitation der
Flüssigkeit. Die Methode, obwohl gezeitenhaft um in bestehende Newtonsche Ko-
de einzubauen, liefert sehr genaue Ergebnisse bei minimalem zusätzlichen Rechen-
wand.

Mit diesem neuen Instrument ausgerüstet, machen wir uns auf den Weg um
den Parameterraum der Gezeitenstörungen systematisch zu erforschen, indem wir
uns auf die Auswirkungen des Durchdringungsfaktor (die Stärke der Störungen
beschreibend) und der Drehung des Schwarzen Lochs auf der Morphologie und
Energetik des entstehenden Trümmerstroms richten. Wir studieren gleichfalls die
Effekte allgemeiner Relativität gegenüber partieller Störungen, um die Spannweite
der Durchdringungsfaktoren, bei welchen die partiellen Störungen verschiedener
Schwarzen Loch-massen vorkommen, zu bestimmen, und die Effekte allgemeiner
Relativität gegenüber dem Geschwindigkeitsschlags das auf dem durchhaltenden
Kern übertragen wurde. Schließlich, täuschen wir den ersten Teil einer Gezeiten-
störung mit unserer Kode vor und als nächstes gebrauchen wir die entstehende
Trümmerverteilung als Beitrag für einer gitterbasierten allgemeiner relativistischen
Magnetohydrodynamikkode, mit welcher wir die Entstehung und Entwicklung der
erfolgenden Akkretionsscheibe beobachten.

Rezumat

Stelele solitare rătăcindprea aproape de supermasiva gaură neagră din centrul galaxiei
lor pot ajunge a fi sfîșiate diferențial, dacă forțele de atracție diferențială datorate
găurii negre le copleșesc pe cele gravitaționale interne ale stelei. În funcție de energia
implicată în această întîlnire, steaua poate fi parțial sfîșiată, ajungînd la starea de un
miez stelar cu două brațe, ori poate fi complet sfîșiată, rezultînd o șuviță lungă și
subțire care probabil va cădea în cîmpul gravitațional al găurii negre și se va pierde în
vîrtejul unui disc de acreție (cele două situații sînt ilustrate pe coperta acestei teze).

În vreme ce unele aspecte ale sfîșierii diferențiale pot fi descrise analitic cu acu-
ratețe rezonabilă, un astfel de eveniment este rezultatul cît se poate de nelinear al
interacțiunii dintre: forțele hidrodinamice și gravitaționale interne ale stelei, accele-
rațiile diferențiale exercitate de gaura neagră, radiație, potențial cîmpuri magnetice și
– în cazuri extreme – reacții nucleare. În vecinătatea găurii negre, efectele relativității
generale devin importante pentru determinarea deopotrivă a destinului stelei și a
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evoluției ulterioare a brîului de rămășițe stelare.
În teza de față prezentăm o nouă abordare, în vederea studierii regimului rela-

tivist al sfîșierilor diferențiale. Ea combină o descriere relativistă exactă a evoluției
hidrodinamice a fluidului, într-un spațiu-timp fix curbat, cu o perspectivă newto-
niană asupra gravitației interne a fluidului. Deși lesne de integrat în coduri sursă
newtoniene existente,metoda oferă rezultate foarte acurate, cuminime eforturi com-
putaționale suplimentare.

Echipați cu acest nou instrument, ne-am propus să explorăm sistematic spațiul
parametric al sfîșierilor diferențiale, concentrîndu-ne asupra efectelor factorului de
impact (care descrie forța sfîșierii) și a rotației găurii negre asupra morfologiei și a
energiei brîului de rămășițe stelare. Totodată, am mai studiat efectele relativității
generale asupra sfîșierilor parțiale, spre a determina atît intervalul factorilor de im-
pact unde apar sfîșieri parțiale în cazul diferitelor mase ale găurii negre, cît și efectele
relativității generale asupra vitezei transmise miezului supraviețuitor. În sfîrșit, am
simulat prima parte a sfîșierii diferențiale pe bazametodei noastre și apoi am introdus
distribuția rămășițelor rezultate într-un alt cod eulerian, magnetohidrodinamic și
general relativist, cu care apoi am urmărit formarea și evoluția discului de acreție
rezultat.

Resumen

Cuando una estrella solitaria se acerca demasiado a un agujero negro supermasivo
situado en el centrode la galaxia, puede sufrir un eventodedisrupcióndemarea, siem-
pre que la fuerza de marea del agujero negro supere la fuerza de gravedad intrínseca
de la estrella, que lamantiene unida. Dependiendo de la violencia de esta interacción,
la estrella puede quedar parcialmente destrozada, con un núcleo estelar sobreviente
rodeado de dos brazos, o completamente destrozada, sin núcleo sobreviviente, pero
con una estructura cuasi tubular larga y delgada, que volverá a aproximarse al agujero
negro y formará un disco de acreción. (Los dos casos están ilustrados en el diseño de
la tapa de este libro).

Aunque algunas cuestiones sobre las disrupciones de marea pueden ser tratadas
con métodos analíticos, estos eventos son el resultado no lineal de la interacción
entre la hidrodinámica y la gravitación internas de la estrella, la aceleración de marea
debido al agujero negro, la radiación, puede incluir los campos magneticos, y – en
casos extremos – las reacciones nucleares. Cerca del agujero negro los efectos de la
relatividad general cobran importancia a la hora de determinar tanto el destino de la
estrella como la evolución posterior del fluido estelar.

En esta tesis presentamos un nuevométodo para estudiar el régimen relativístico
de las disrupciones de marea, combinando una descripción relativística exacta de la
evolución hidrodinámica del fluido estelar en un espacio-tiempo fijo, pero curvo,
con una descripción newtoniana de la gravitación interna del fluido. Nuestro mé-
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todo, aunque trivialmente incorporable en cualquier código newtoniano existente,
produce resultados muy precisos a cambio de un aumento del coste computacional
esencialmente despreciable.

Equipados con esta nueva herramienta, procedemos a explorar sistemáticamente
el espacio de parámetros de las disrupciones demarea, concentrándonos en la influen-
cia del parámetro de impacto (que describe la magnitud de la disrupción) y de la
rotación del agujero negro sobre la morfología y la distribución energética del fluido
estelar resultante. También estudiamos los efectos de la relatividad general sobre las
disrupciones parciales, para determinar el intervalo de parámetros de impacto que
producen una disrupción parcial dependiendo de la masa del agujero negro, y los
efectos de la relatividad general sobre el aumento de velocidad transferido al núcleo
estelar sobreviviente. Finalmente, después de simular la primera parte de una disrup-
ción con nuestro código, usamos la distribución de fluido resultante como condición
inicial para un código euleriano, relativístico y magnetohidrodinámico, con el fin de
estudiar la formación y evolución del disco de acreción resultante.
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Fig. 2.2 on p. 13: Fractional composition of stars scattered into the loss cone (left
panel) and the demographics of the flaring events (right panel). The abbreviations
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and asymptotic giant branch stars (AGB). The most striking observation is the
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sharp dropoff in the flaring rate at mbh ∼ 108 M⊙, which confirms that – com-
plementary to AGNs, which are biased towards the larger SMBHs – TDEs are
biased towards lower-mass SMBH.The other observation is thatMS stars are the
most common victims of disruption by SMBHs with mbh ≲ 108 M⊙, while RG
and AGB stars dominate the demographics for larger SMBHs.

This figure reproduces Fig. 14 of MacLeod et al. (2012).

Fig. 2.3 on p. 15: Histograms of totalmechanical energyE after disruption, for vari-
ous parabolicNewtonian encounterswith impact parameters βbetween0.6 and1
(left panel), andbetween2 and10 (right panel). Darker hues correspond tohigher
values of β. In these simulations, we use m⋆ = M⊙, r⋆ = R⊙, mbh = 106 M⊙.
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lished as Fig. 12 in Paper II.

Fig. 2.5 on p. 25: The return rate of the debris exhibits a characteristic “outburst-
like” evolution, consisting of a fast rise (of the order of days) and a slow decay
(of the order of years). If the circularization time scale is much shorter than the
fallback time scale – and this question, far frombeing answered, is currently being
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viour. This plot shows the Ṁ curves for TDEs with 0.55 ≤ β ≤ 11. While β
has an obvious influence on the rise of the Ṁ curve (in both slope and maximum
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This figure was produced by the author, using data fromour own simulations, and
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by the energy and angular momentum, the loss cone contains orbits with angular
momenta L ≤ Llc, given in terms of R ≡ L2/Llc(E)2.

This figure reproduces Fig. 1 of Merritt (2013).

Fig. 2.7 on p. 39: Magnitude of relativistic effects as a function of the periapsis dis-
tance rp expressed in gravitational radii rg = Gmbh/c2, as computed using Eqs.
(2.84), (2.85) and (2.87), assuming an orbit with e = 0.98. Decreasing the
eccentricity slightly increases the magnitude of the angular precessions (since it
reduces the apocentre distance, which appears in the denominator), but most
TDEs will have e ≈ 1. Changing the black hole spin has a very small effect
on the Lense–Thirring precession, as evidenced by the small difference between
the green lines. We observe that all effects decrease by more than two orders of
magnitude within 100 rg, and that the third order effects (here, Lense–Thirring
precession) is about two orders of magnitude weaker than the second-order ef-
fects (apsidal precession and gravitational redshift).

This figure was produced by the author, based on Eqs. (2.84), (2.85) and (2.87).

Fig. 3.1 on p. 48: Spatial distribution of the tidal debris shortly after the first peri-
apsis passage (red particles), and at the beginning of the second periapsis passage
(green particles), in a parabolic (e = 1; left panel) and an elliptical (e = 0.8;
right panel) encounter. The figure reveals the virtually one-dimensional nature
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Fig. 4.1 on p. 60: Morphological types of debris stream seen in our simulations. The
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1
Preliminaries

The world is indeed full of peril,
and in it there are many dark places.

Haldir

Direct observations of the centre of M87 (Event Horizon Telescope Collaboration
et al., 2019), as well as dynamical studies of stellar and gas kinematics near the cores
of local galaxies such as the Milky Way (Schödel et al., 2003; Ghez et al., 2008),
M31 (Kormendy & Bender, 1999; Bender et al., 2005; Garcia et al., 2010) and M32
(van derMarel et al., 1997) provide strong evidence for the existence of supermassive
black holes (SMBH).Numerous indirect observations have established that SMBHs
span a wide range of masses, from ∼ 105 M⊙ (Secrest et al., 2012) to as much
as a few ×1010 M⊙ (van den Bosch et al., 2012). Recent reviews on the nature,
properties and manifestations of our own galaxy’s supermassive black hole, Sgr A*,
have been published by Genzel et al. (2010) and Morris et al. (2012). The formation
and evolution of these extreme objects are still subject of debate (Volonteri, 2012),
but it is generally accepted that gas accretion onto them is the mechanism behind
quasars (historically called quasi-stellar objects, and hence frequently abbreviated to
QSOs), the most energetic form of active galactic nuclei (AGNs): luminous sources
that can outshine the rest of their host galaxy by a few orders of magnitude. The
idea of quasars being gas accretion-powered supermassive black holes goes back to
Lynden-Bell (1969).

Such highly luminous AGNs are thought to have been a common occurence a
few billion years after the Big Bang (during the so-called “quasar era” at redshift z ∼
3, see e.g. Kormendy & Richstone, 1995; Richstone et al., 1998), but AGN activity
has since subsided, andmostnearby galactic nuclei (includingour own) arenowadays
quiescent, with the SMBHsdim and hence probably starved of fuel (Rees, 1990;Ho,
2008; Schawinski et al., 2010). Their dimness is one of the major unresolved prob-
lems in accretion theory, sincemost of these SMBHs seem tohave enough gas around
them to sustain a steady AGN (e.g., Menou & Quataert 2001): the occurrence of a
radiatively inefficient (advection- or convection-dominated) accretion mode might
be the answer to the dimness problem (Narayan, 2002).
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It is in any case difficult to probe the existence and determine the properties
(mass and spin, no hair) of SMBHs. While for nearby galaxies one can resolve the
stellar distribution near the galactic centre and thus conduct dynamical observations
(e.g., Ghez et al., 2008), or even monitor tiny variations in the activity of the SMBH
(faint, but frequent flares on time scales of days, e.g. Garcia et al. 2010; Li et al. 2011;
Zubovas et al. 2012), inmore distant galaxies only the∼ 1% of SMBHs undergoing
major accretion episodes can be observed directly. The question then, arises, of what
transient events might brighten up these SMBHs, and of how to predict and explain
their observational signature.

Tidal disruptions, violent events in which stars are ripped apart into loose gas
streams by the extremely steep gravitational potential of a black hole1 were first pro-
posed asmeansof fuellingAGNs (Hills, 1975; Sanders, 1984), but Shields&Wheeler
(1978) showed that they cannot in fact provide the required steady supply of energy.

Their reasoning is twofold, though one must first distinguish between two
AGN models: (a) black hole steadily accreting gas as it is produced, versus
(b) black hole having quiescent periods during which a large amount of gas
(∼ 106 M⊙) is stored, followed by brief periods of gas ingestion at high
luminosities (∼ the Eddington luminosity, LEdd).
For the first scenario, tidal disruption rates are not high enough to sustain
a continuous gas flow, because low angular momentum orbits are quickly
depleted of stars (this so-called “loss cone depletion” will be discussed in
Sec. 2.4.2), and subsequent relaxation of stars into disruptive orbits is too
slow to give adequate QSO luminosity, even when enhanced by some col-
lective process (e.g., inside a stellar cluster). Also, it cannot be neglected that
the most luminous quasars have the stellar disruption radius far inside the
event horizon (except for the giant stars; see Sec. 2.1.5), which means that
tidal disruption of solar-type stars cannot happen there in the first place.
For the second scenario, such a mass of gas cannot be supported by its own
internal pressure, though it can be supported in a disc by angularmomentum.
Various instabilities can then trigger the phase of rapid accretion and high
luminosity. Tidal disruptions can certainly contribute to such an accretion
disc, along with general infall of galactic gas, usually triggered by galaxy mer-
gers (e.g., Younger et al., 2009), and gas produced by nearby stellar winds
(e.g., Cuadra et al., 2006).

Later on, Frank & Rees (1976) estimated for the first time the rates and probable
manifestations of tidal disruptions by massive black holes in globular clusters, and
(more like a proof of concept) applied their results to a galactic nucleus with a super-
massive black hole. The idea was taken further by Frank (1978), Lidskii & Ozernoi

1It is steep in the sense that the potential difference over a relatively short distance (the radius of
the star) is large enough to overcome the self-gravity of the star, causing its disruption.
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(1979) and Lacy et al. (1982), who discussed the fate of the gas liberated by tidal
disruptions, but it was Rees (1988) who laid the foundations of the modern the-
ory of tidal disruptions, by describing their evolution, the light curves, the possible
radiation-driven outflows, and the fate of the ejected, unbound material.

Gas originating from processes other than tidal disruptions (for instance, the
already-mentioned infall of galactic gas and the winds from young stars close to the
SMBH) is probably also orbiting these massive black holes, and its accretion would
also give rise to flares and allow us to probe the SMBHs. However, the amount
and the distribution of gas near galactic centres cannot be easily predicted, and gas
accretion episodes can be relatively chaotic: with the exception of the inner∼ 10 pc
aroundSgr.A*, where the extent of the surounding gas is observationally constrained,
very little is known about the properties of the media surrounding the SMBHs of
inactive galaxies, and limits can only be placed on their density and pressure struc-
tures based on first principles. Also, gas dynamics is governed not just by gravita-
tional forces, but also by pressure and magnetic forces, while stars are “clean gravity
probles” (Alexander, 2003). Their structure is well-known from more “peaceful”
environments, and their luminosities and spectra act as proxies for their mass and
age (that is, of course, if they behave the same in such extreme environments). The
stellar distribution in the dense environment around a SMBH is then much better
constrained, both theoretically and observationally, and can lead to more accurate
predictions concerning the rates and the evolution of tidal disruption events. For in-
stance, in a galaxy like ours, which is believed to harbour a SMBHof∼ 4×106 M⊙
(e.g., Ghez et al., 2008), the expected tidal disruption rates are between 10−6 yr−1

(Syer & Ulmer, 1999; Donley et al., 2002) and 10−4 yr−1 (Magorrian & Tremaine,
1999; Brockamp et al., 2011), with the exact rates depending on the steepness of
the galactic nuclear density profile, stellar evolution, etc. (Wang & Merritt, 2004)
(conservative, respectively generous estimates might extend these values by an order
of magnitude in either direction). The rates would be enhanced by the presence of
a massive perturber, such as an intermediate mass black hole (Chen & Liu, 2013)
or a cluster of ∼ 104 stellar-mass black holes (Miralda-Escudé & Gould, 2000) co-
orbiting the SMBH.

Tidal disruptions can therefore teachus about supermassive blackholes in galactic
nuclei in several ways, which we will quickly summarize. First, they can reveal the
presence and the mass of the central black hole.

We have already mentioned that individual stellar orbits around Sgr. A* are
directly measurable (e.g., Ghez et al., 2008; Gillessen et al., 2009a; Genzel
et al., 2010). In external galaxies, direct imaging of individual stars in the
galactic nuclei is not possible, but an alternative is available instead. For
moderatelymassive, nearby galaxies inwhich the SMBH’s radius of influence
(Eq. 2.7) can be spatially resolved, one can take a long-slit spectrum across
the centre of the galaxy, which gives an estimate of the velocity dispersion
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σ as a function of radius r. σ(r) can then be used to obtain either a crude
estimate of the black hole’s mass according to Gmbh/r ≈ σ2(r), or a more
exact value by fitting families of stellar orbits to the surface brightness profile
and velocity dispersion data (e.g., Gebhardt et al., 2000). Similar procedures
can be developed for observing gas instead of starlight (e.g., Atkinson et al.,
2005). For more distant galaxies, SMBH masses can only be measured in a
number of fortunate circumstances, such as the presence of an AGN whose
brightness variability and emission line broadness allow the estimation of the
SMBHmass (e.g., Landt et al., 2013, and references therein), or the presence
of water masers, whose orbital motion can be measured very precisely using
radio interferometry (e.g., Greene et al., 2010).
In Chapter 2 we will show that most properties of tidal disruptions (such as
evolution time scales, peak luminosities and wavelengths) correlate well with
themass of the SMBH.Since tidal disruptions donot dependon thepresence
of an AGN and are fairly luminous (visible up to a redshift z ∼ 1 according
to Strubbe, 2011), they provide an independent technique for calculating
SMBH masses, even in faint and distant galaxies. In fact, Milosavljević et al.
(2006) argued that the number of tidal disruption-powered sources should
increase with redshift because back then SMBHs were smaller, galactic nuc-
lei were denser, and stars were more massive, all these enhancing the tidal
disruption rate.

The accretion of gaseous debris from a disrupted star also provides a laboratory for
testing accretion theories, which can then be applied to understand more complic-
ated scenarios (such as galaxy mergers).

The ability of an accretion flow to radiate away its energy has major implica-
tions on its dynamics (see, e.g., Krolik, 1999; Frank et al., 2002). For sub-
Eddington accretion rates, the theory is fairly simple: the disc is geomet-
rically thin because the time scale on which photons are created (thermally
or by bremsstrahlung) and diffuse vertically out of the disc is much longer
than the time in which gas can spiral inwards within the disc. Radiation
therefore provides an efficient coolingmechanism, and the disc is expected to
emit as a multicolor blackbody. If the accretion rate surpasses the Eddington
limit, however, radiation may no longer cool the disc efficiently. Photons
are trapped in the disc, which becomes hot; a part of the photons may be
advectedwith the fluid towards the black hole, while the other partmay drive
– through sheer radiation pressure – some of the low angularmomentum gas
in an outflow away from the black hole (e.g., King & Pounds, 2003). The
dynamics and observational signatures of super-Eddington accretion flows
have been studied theoretically (e.g., Abramowicz et al., 1988) and numer-
ically (e.g., Ohsuga et al., 2005), but they remain unsolved questions in ac-
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cretion theory. Intriguingly, since the trapping and advection of photons in
super-Eddington flows are expected to saturate the luminosity of SMBHs,
such systems have recently been suggested to work as cosmological standard
candles (Wang et al., 2013).
There are few chances of observing super-Eddington flows in action, most
notably in quasars (e.g., Kollmeier et al., 2006) and, very rarely, in those X-
ray binary systems (XRBs) that are in the so-called “very high state” (e.g.,
Esin et al., 1997). Tidal disruptionwould provide another such opportunity,
since the initial inflow of gas towards the black hole after the star has been
disrupted is expected to occur at super-Eddington rates (this will be calcu-
lated in a simple way in Sec. 2.3.3). Tidal disruptions could perhaps be easier
to interpret than AGNs and XRBs, since they may have a more predictable
mass feeding rate and inflowing gas geometry. In addition, the time scales on
which tidal disruptions events unfold would allow us to observe a wide range
of feeding rates within just months to years.

Tidal disruption rates can also shed a light on the structure and history of galactic
nuclei, on scales that cannot be resolved through direct imaging (except perhaps for
a handful of local galaxies).

Figure 1.1: The mbh–σb, mbh–Lb and mbh–mb relations in two sample sets of galaxies
(upper and lower panels). This figure reproduces Figs. 4, 5 and 6 of Beifiori et al. (2012).

Observational studies found empirical scaling relations between the mass of
theSMBHandproperties of its surrounding galactic bulge (seeFig. 1.1), such
as stellar velocity dispersion σb (“mbh–σb” relation; Gebhardt et al., 2000;
Ferrarese & Merritt, 2000; Pota et al., 2013), luminosity Lb (“mbh–Lb” re-
lation; Kormendy & Richstone, 1995; Faber et al., 1997; Ferrarese & Ford,
2005), bulge mass mb (“mbh–mb” relation; Magorrian et al., 1998; Häring
& Rix, 2004), central light deficit (Hopkins & Hernquist, 2010), and total
number of globular clusters (Burkert & Tremaine, 2010). This is a surprising
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feature considering that the bulge extends far beyond the gravitational influ-
ence of the black hole, and suggests that SMBHs and bulges evolve together
(Silk & Rees, 1998; Di Matteo et al., 2005) in a (so-far) poorly-understood
process which is nevertheless of central interest to the field of galaxy evol-
ution. The relevance for tidal disruptions is that the density structure of
the bulge nucleus determines which processes dominate the funnelling of
stars on to disruption orbits, therefore controlling the disruption rate. For
example, in spherically symmetric and isotropic nuclei, two-body relaxation
is likely the main driver of stars on disruption orbits (e.g., Frank & Rees,
1976). In triaxial or axisymmetric potentials (typical of e.g. bar or spiral
discs), chaotic stellar orbits can enhance the disruption rate without requir-
ing gravitational scattering (e.g., Merritt & Poon, 2004), and the same can
happen in the vicinity of two merging SMBHs (e.g., Chen et al., 2009). Ob-
servation of tidal disruption rates can therefore, at least in principle, put con-
straints on the structure and history of distant galactic nuclei that cannot be
otherwise resolved.

Tidal disruptions also contribute to the growth of seed black holes into full-fledged
SMBHs (Zhao et al., 2002;Miralda-Escudé&Kollmeier, 2005;Bromley et al., 2012),
with the total mass of stars consumed by one SMBH over the lifetime of its galaxy
expected to be as high as 106 M⊙, independent of galaxy luminosity (Magorrian
& Tremaine, 1999). In the Milky Way, where individual stars and their orbits can
be observed directly, tidal disruptions can also be used to probe general relativistic
effects close to the black hole. Expected post-Newtonian deviations include orbital
periapsis shift, Lense-Thirring precession and gravitational redshift (these will be dis-
cussed in Sec. 2.5), and possibly low-frequency gravitational waves, since disruptions
of very low-mass main sequence stars are similar in signature to the extreme-mass
ratio inspiral scenarios (Frank & Rees, 1976; Wang & Merritt, 2004; Madigan et al.,
2011).

Finally, tidal disruption of stellar binary systems that venture too close to the
black hole may be able to explain a number of puzzling observations around Sgr. A*.
First, they are thought to be the source of high velocity stars (v ≳ 1000 km s−1)
ejected from our galaxy (Sesana et al., 2007), since the classical binary supernova
scenario (Blaauw, 1961) can only produce velocities ≲ 300 km s−1 for solar-type
stars (Antonini et al., 2010). Tidal disruptions may also be the key to the origin of
the S-stars, apparently young, main sequence stars in tight eccentric orbits around
the SMBH (e.g., Perets & Gualandris, 2010). The observations of the S-stars are
of paramount importance for measuring the properties of and understanding the
dynamics around Sgr. A* (e.g., Eisenhauer et al., 2005; Gillessen et al., 2009b), and
will be reviewed in Sec. 2.4.3.



2
Theoretical aspects

I have had my results for a long time:
but I do not yet know how I am to arrive at them.

Carl Friedrich Gauss

We begin our analysis of tidal disruption events (TDEs) by introducing a number of
length scales, time scales, and other physical quantities that govern the evolution of
such events.

Equations will often be rescaled to typical quantities that appear in TDEs (e.g.,
106 M⊙ for SMBHmasses, parsecs or gravitational radii for distances, etc.). Wenote
that in the literature physical lengths are sometimes expressed in terms of angular
sizes for a distance to theGalactic Centre of r0 ≈ 8 kpc, corresponding to 1 arcsec ≈
0.039 pc (e.g., Eisenhauer et al., 2003).

2.1 Length scales

2.1.1 Event horizon

The event horizon can be thought of as a one-way surface that matter and light can
only cross going inwards. Since matter plunging into the event horizon becomes
causally disconnected from the rest of the universe, the existence of an event horizon
directly affects the overall dynamics and energy budget in an accretion system.

For a non-rotating black hole, the event horizon is located at the Schwarzschild
radius rs,

rs =
2Gmbh

c2

≈ 9.6 × 10−8 pc
(

mbh

106 M⊙

)
. (2.1)

For a spinning black hole with spin J and Kerr parameter a ≡ J/mbhc, the event
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horizon re is situated at (e.g., Misner et al., 1973, p. 879)

re =
Gmbh

c2
+

√(
Gmbh

c2

)2

− a2,

= xGmbh

c2
(2.2)

with 1 ≤ x ≤ 2 and x = 1 for a maximally spinning (a = Gmbh/c2 or J =
Gmbh

2/c) black hole. In this thesis and in the papers we will normally use the di-
mensionless spin parameter a⋆ ≡ Jc/Gmbh

2, which ranges from −1 to 1, with the
convention that a⋆ > 0 for prograde orbits and a⋆ < 0 for retrograde orbits.

2.1.2 Innermost stable circular orbit

Typically referred to as “ISCO”, it marks the transition radius within which stable
circular motion is no longer possible. For a standard thin accretion disc, this implies
the existence of an inner edge fromwhich the fluid falls essentially freely into theBH.
The radius of this orbit is a function of the spin parameter of the BH. The formula
for it is (see e.g. Frolov & Novikov, 1998):

risco =
Gmbh

c2
(
3 + Z2 ± [(3 − Z1) (3 + Z1 + 2Z2)]

1/2
)
, (2.3)

where

Z1 = 1 +
(
1 − a⋆2

)1/3 [
(1 + a⋆)1/3 + (1 − a⋆)1/3

]
(2.4)

Z2 =
(
3a⋆2 + Z1

2
)1/2

. (2.5)

For a Schwarzschild black hole, therefore, the ISCO is located at 3 rs.

2.1.3 Marginally bound circular orbit

In general relativity there is a critical value for the angularmomentumof a test particle
below which the resulting centrifugal repulsion is not enough to prevent the tra-
jectory from plunging into the BH’s event horizon. This translates into a minimum
periapsis distance that a given trajectory can attain. In the case of marginally bound
particles (i.e. particleswith parabolic-like energies), the corresponding radius is given
by (Bardeen, Press & Teukolsky, 1972):

rmb = 2mbh − a + 2
√

mbh(mbh − a). (2.6)

In the context of TDEs, the different ways in which this radius and the tidal radius
scale with the BH’s mass (rmb ∝ mbh and rt ∝ mbh

1/3, respectively) imply that, for
a given type of star, there exists a maximum possible value of mbh above which the
star will be swallowed whole inside the BH horizon before being tidally disrupted,
see Fig. 2.1 below.
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2.1.4 Radius of influence

Thecentral black hole’s radius of influence rh defines the regionwhere stellar dynam-
ics is dominated by the gravity of the black hole. Kinematically, this corresponds
approximately to the sphere that encloses stellar (plus dark matter) mass (mst) equal
to the mass of the black hole, mst(r < rh) ∼ mbh, so that the gravitational potential
of the SMBHis greater than the combined gravitational potential of the surrounding
stars. Measurements around Sgr. A* indicate that mst(r ≲ 2 pc) ≃ mbh and
mst(r ≲ 4 pc) ≃ 2 mbh (Schödel et al., 2003), which gives a radius of influence
of the order of rh ∼ 2 pc.

Customarily, the radius of influence has been defined by equating the kinetic
energy of a star (∼ m⋆σ⋆2) to its energy in the gravitational potential of the black
hole (∼ Gm⋆mbh/r), while ignoring factors of order unity,

m⋆σ⋆2 =
Gm⋆mbh

rh
rh =

Gmbh

σ⋆2 ,

≈ 1.72 pc
(

mbh

106M⊙

)(
σ⋆

50 km s−1

)−2

, (2.7)

where σ⋆ is the one-dimensional stellar velocity dispersion, σ⋆2 = ⟨v⋆2⟩, where
the average is over the stellar velocity distribution. While this approximation holds
for an isothermal sphere, in which ⟨v⋆2⟩ is independent of position (e.g., Binney &
Tremaine, 2008, Sec. 4.3.3), for a non-isothermal density distribution (as in the case
of real galactic nuclei), σ⋆ is in fact a function of radius, and the above expression is
not well defined and can only serve as an order-of-magnitude estimate.

Comparing the numerical value of rh (Eq. 2.7) with the value of rs (Eq. 2.1), we
notice ∼ 8 orders of magnitude in difference. Since general relativistic effects only
become important on distances of the order of the Schwarzschild radius, most of the
stars thatmove under the influence of the SMBH follow essentially Keplerian orbits.

2.1.5 Tidal radius

Tidal disruption occurs when a star of mass m⋆ and radius r⋆ approaches a super-
massive black hole of mass mbh on an orbit with periapsis rp smaller than the tidal
radius rt, defined as the distance at which the gravitational acceleration at the surface
of the star (∼ Gm⋆/r⋆2) is surpassed by the tidal acceleration (∼ Gmbhr⋆/r3), i.e.

Gm⋆

r⋆2 ≲ Gmbhr⋆
r3

⇒ rt3 ≃
mbh

m⋆
r⋆3, (2.8)
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which leads directly to the usual definition,

rt = αr⋆
(

mbh

m⋆

)1/3

(2.9)

= 100 R⊙
(

r⋆
R⊙

)(
mbh

106 M⊙

)1/3 ( m⋆

M⊙

)−1/3 ( α
1

)
, (2.10)

(2.1)
≈ 24.8 rs

(
r⋆
R⊙

)(
mbh

106 M⊙

)−2/3 ( m⋆

M⊙

)−1/3 ( α
1

)
. (2.11)

The dimensionless coefficient α is of order 1, and depends on the structure of the
star. It was found to be ≈ 1.69 for a homogeneous, incompressible body (Luminet
&Carter, 1986;Novikov et al., 1992) and≈ 0.89 for ann = 3 polytrope (Sridhar&
Tremaine, 1992; Diener et al., 1995). The critical periapsis distance rp = rt at which
the tidal forces disrupt a star is also called the effective Roche limit. Alternative
physical formulations for the tidal disruption criterion are that the star is disrupted
when its typical density (∼ m⋆/r⋆3) falls bellow the density the SMBH would have
had if its mass were spread over the volume rt3 (∼ mbh/rt3), or when the crossing
time through the dissipation zone

(
∼ (rt3/Gmbh)

1/2) falls bellow the star’s free
fall time

(
∼ (r⋆3/Gm⋆)

1/2) (e.g., Alexander, 2012). Naturally, both alternative
formulations yield the exact same expression for rt we derived in Eq. (2.8).

The tidal radius gives a measure of whether tidal forces are able to remove mass
from the stellar surface, but the final fate of the star depends on whether these forces
are strong enough to disrupt the star’s densest regions. It is even possible for a core
resulting from a seemingly complete disruption to recollapse into a self-bound object
(Guillochon & Ramirez-Ruiz, 2013).

We point out the inverse dependence of rt/rs on mbh in Eq. (2.11): this implies
that if mbh is sufficiently large, rt can become smaller than rs (or than re in the case
of rotating black holes). Since tidal disruption can only occur if rt lies outside the
event horizon (Eq. 2.2), extremelymassive black holes tend to “swallow” stars whole,
without disrupting them first. Since

rt
re

(2.2),(2.9)
= αr⋆

(
mbh

m⋆

)1/3 c2

xGmbh

∝ x−1ρ⋆
−1/3mbh

−2/3, (2.12)

it follows that themore compact the star to be disrupted, the less massive the SMBH
must be. In otherwords, for a starwith a given r⋆ andm⋆, there exists amaximal black
hole massmbh which is still able to disrupt the star. This implies that tidal disruption
ofmain-sequence stars is an ineffectivemechanism for poweringmoremassiveAGNs
(mbh ≳ 108M⊙), since the tidal gravity of these black holes would be too small to
destroy the star before it crosses the event horizon (these SMBHs could still disrupt
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giant stars though, see Figs. 2.1 and 2.2). Such an encounter would leave little, if
any electromagnetic signature, although some gravitational wave emission could still
be detected (Kobayashi et al., 2004). Beloborodov et al. (1992) showed that this
mass limit can be slightly increased for Kerr black holes, as long as the disrupted star
approaches from a favourable direction.

Incidentally, some authors (e.g., Magorrian & Tremaine, 1999) find it useful to
distinguish the “consumption” rate (the rate at which stars comewithin a radius rt of
the BH, even if the periapsis lies inside the event horizon) from the “flaring” rate (the
rate of disruption of stars outside the horizon of the BH).This distinction should be
taken into account when comparing rates of “disruption” events from various papers.

In an attempt to explain the lack of massive S-stars (see Sec. 2.4.3) very close
(≲ 10 AU) to the black hole, Li & Loeb (2013) recently suggested that heat de-
posited by excitation of modes within the star at each periapsis passage (under the
cumulative effect of tidal heating by the SMBH and the gravitational interaction of
the background stars) can lead to a runaway disruption of the star as far as five times
farther than the normal tidal disruption radius. Unfortunately, since this is a secular
effect, it probably has negligible consequences on the tidal disruption rates.

Another interesting possibility is related to the Brownian motion of the black
hole (see, e.g., Alexander & Livio, 2001). Under the gravitational influence of the
dense stellar cluster surrounding it, the SMBH oscillates about the common centre
of mass with an amplitude much larger than the tidal radius, on a time scale com-
parable to the orbital period of the tidally disturbed stars (see Merritt et al. 2007 for
simulations and a discussion). Stars approaching on disruptive orbits may therefore
“just escape” doom.

2.1.6 Impact parameter

The strength of a tidal disruption event can be characterised by the dimensionless
parameter (Press & Teukolsky, 1977)

η =

(
m⋆

mbh

rp3

r⋆3

)1/2

, (2.13)

where rp is the periapsis distance (see Sec. 2.1.7), although a significant part of the
literature on tidal disruption uses the related impact parameter β, defined as

β =
rt
rp

(2.9),(2.13)
= η−2/3. (2.14)

The outcome of the encounter is encoded in the parameter β. Generally, the star is
disrupted when β ≳ 1. For β ∼ 1, the star smoothly disrupts without any strong
compression near periapsis, while for β ≫ 1 the compression at periapsis is very
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Figure 2.1: Tidal radius rt and event horizon radius re as a function of black hole
mass for various types of stars. Having a steeper dependence on the black hole mass
than the tidal radius, see Eqs. (2.2) and (2.9), the event horizon eventually overcomes
it, rendering tidal disruption impossible. In this example, the neutron star (m⋆ =
1.4 M⊙, r⋆ = 12.5 km) can only be disrupted by stellar-mass black holes (mbh ≲
10 M⊙), the white dwarf (m⋆ = 0.6 M⊙, r⋆ = 9000 km) can only be disrupted by
intermediate mass black holes (mbh ≲ 105 M⊙), the main-sequence star (m⋆ = M⊙,
r⋆ = R⊙) can only be disrupted by supermassive black holes up to mbh ≲ 108 M⊙,
while the blue supergiant (m⋆ = 20 M⊙, r⋆ = 200 R⊙) can be disrupted even by the
largest black holes (mbh ≃ 1011 M⊙).

strong and causes a supersonic “pancaking” of the star into the orbital plane (Carter
& Luminet, 1983, 1985).

A related quantity is the critical impact parameter for disruption βd, defined
as the impact parameter necessary for a complete disruption of the star (with no
surviving self-bound stellar remnant). It was first calculated byDiener et al. (1995) as
βd = 1.12 for γ = 4/3 polytropes and βd = 0.67 for γ = 5/3 polytropes. Later on,
Guillochon & Ramirez-Ruiz (2013) found instead the values βd = 1.9 for γ = 4/3
polytropes and βd = 0.95 for γ = 5/3 (the latter also confirmed in Paper IV and
by Mainetti et al., 2017), with the caveat that the exact boundary between survival
and destruction for real stars might be different depending on rotation, metallicity
and age. Stars that are counter-rotating with respect to the orbital axis, for instance,
are much more difficult to disrupt (even when the orbit formally reaches the tidal
radius), but such an encounter may give rise to peculiar X-ray transients (Sacchi &
Lodato, 2019). The metallicity and age of the star, on the other hand, generate a



2.1. Length scales 13

106 107 108 109 1010
0.0

0.2

0.4

0.6

0.8

1.0

Mbh @M�D

f N 

flaring

swallowed

106 107 108 109 1010

0.2

0.4

0.6

0.8

1.0

Mbh @M�D

f fl
ar

in
g

MS
RG

HB

AGB

Figure 2.2: Fractional composition of stars scattered into the loss cone (left panel) and
the demographics of the flaring events (right panel). The abbreviations refer to main-
sequence stars (MS), red giants (RG), horizontal branch stars (HB), and asymptotic
giant branch stars (AGB). The most striking observation is the sharp dropoff in the
flaring rate atmbh ∼ 108 M⊙, which confirms that – complementary to AGNs, which
are biased towards the larger SMBHs – TDEs are biased towards lower-mass SMBH.
The other observation is that MS stars are the most common victims of disruption by
SMBHs with mbh ≲ 108 M⊙, while RG and AGB stars dominate the demographics
for larger SMBHs. This figure reproduces Fig. 14 of MacLeod et al. (2012).

departure from the simple polytropic structure typically assumed in numerical and
analytic studies, and may have significant effects not only on the disruption limit,
but also on the peak, time to peak, and shape of the mass fallback rate (Law-Smith
et al., 2019).

Alexander & Morris (2003) proposed the concept of squeezars, stars with β ≳
1 that have narrowly escaped disruption but are caught on highly eccentric orbits
around the SMBH. These would generate transients with an atypically high lumin-
osity, comparable to their Eddington luminosity, powered by the tidal interactions
with the black hole. Their expected life time, limited by mass loss near periapse, can
be orders of magnitude larger than that of a normal (β < 1) tidal disruption event,
providing an oportunity to observe the effects of strong tides in stars.

2.1.7 Apsides

The periapsis rp (often called pericentre2) is the point at which the star is closest to
the black hole, and its ratio to the tidal radius (β, discussed above) is the single most
important quantity for determining the outcome of the encounter.

Thefirst periapsis approach,while the star is still self-bound, is crucial because the
entire star has virtually the sameorbital kinetic energy. Thismeans that the difference

2An archaic term for the periapsis of an orbit around a supermassive black hole is peribarathron
(Young et al., 1977), from the Ancient Greek βάραθρον, a supposedly bottomless pit in Athens
into which the dead bodies of executed criminals were cast, and from which there was no return.
Unfortunately, the term didn’t quite catch on.
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in specific binding energies of the future debris (at this point still parts of the star)
comes entirely from the spread in potential energies with respect to the black hole at
rp.3 This spread is well approximated via a first-order Taylor expansion of the SMBH
potential around the star’s centre of mass at periapsis (r ≡ rp),

E(rp + δr) = −Gmbh

rp
+

Gmbh

rp2 δr + O(δr2). (2.15)

The spread in energies ΔEbetween themost bound (r = rp−r⋆) and the least bound
(r = rp + r⋆) parts of the star is then given by

ΔE = E
(
rp + r⋆

)
− E

(
rp − r⋆

)
(2.15)
≈

[
−Gmbh

rp
+

Gmbh

rp2 r⋆
]
−
[
−Gmbh

rp
+

Gmbh

rp2 (−r⋆)
]

= 2
Gmbh

rp
r⋆
rp
, (2.16)

(2.9),(2.14)∼ kGq1/3m⋆

r⋆
β2, (2.17)

where q ≡ mbh/m⋆, and k is a constant of order unity related to stellar structure and
rotation prior to disruption. Assuming r⋆ ≪ rp, this spread ismuch smaller than the
specific kinetic energy at periapsis (∼ Gmbh/rp), but much larger than the specific
binding energy of the star (∼ Gm⋆/r⋆) (e.g., Lacy et al., 1982).

Thevalidity of thiswidely used expression (Kochanek, 1994;Ulmer, 1999; Strub-
be & Quataert, 2009; Kasen & Ramirez-Ruiz, 2010; Lodato & Rossi, 2011) has re-
cently been questioned by Stone et al. (2013), based on the argument that by the time
the star reaches periapsis, its fluid elements are already moving on almost ballistic
trajectories. They propose that a more accurate estimate can be obtained by taking
the potential gradient at themoment of tidal disruption, i.e. when the star crosses the
tidal sphere andbecomes unbound, whichwould simply replace rp by rt inEq. (2.16).
Using Eq. (2.14), the new equation for the energy spread could be rewritten in terms
of the impact parameter β as

ΔE
(2.16),(2.14)∼ kGmbh

rt/β
r⋆

rt/β

∼ kβnGmbh

rt
r⋆
rt
, (2.18)

with n = 2 for the standard picture and n = 0 for the revised expression, although
detailed analysis of the tidal compression can lead to intermediate or piecewise values

3In all fairness, tidal torques also spin-up the star, creating a difference between the kinetic energies
of the closest and the farthest parts of the star. This difference, of the order of ∼ Gm⋆/r⋆, while
comparable to the binding energy of the star taken from the orbit, is much smaller than the spread in
potential energies.
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Figure 2.3: Histograms of total mechanical energy E after disruption, for various
parabolic Newtonian encounters with impact parameters β between 0.6 and 1 (left
panel), and between 2 and 10 (right panel). Darker hues correspond to higher values
of β. In these simulations, we use m⋆ = M⊙, r⋆ = R⊙, mbh = 106 M⊙. The
logarithmic scale on the y axis allows us to easily read off the energy spread dE from the
chart.
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Figure 2.4: Width of the ΔE interval (scaled byEref = Gq1/3M⊙/R⊙) that contains
98% of the particles, plotted against the impact parameter β. We observe that ΔE does
not follow a simple power law. For comparison, we overplot the ΔE ∼ kβ2 power law
given by Eq. (2.17) (dashed black line), and the ΔE ∼ kβ0 law given by Eq. (2.18)
(horizontal dotted line). Empirically, we find k ≈ 2.05 for our γ = 5/3 non-rotating
polytrope. The data behind these plots came from our own simulations; the figure was
published as Fig. 12 in Paper II.

for n (see Fig. 2.4 for results from our own Newtonian and relativistic simulations).
We also point out that this definition is equivalent to that given by Zubovas et al.
(2012), ΔE ∼ vaΔva, if we take va to be the parabolic velocity at the tidal radius
(∼

√
2Gmbh/rt) and Δva to be the escape velocity from the surface of the star (∼



16 Chapter 2. Theoretical aspects

√
2Gm⋆/r⋆). Then, ignoring factors of order unity, we obtain

ΔE ∼
(

Gmbh

rt

)1/2 (Gm⋆

r⋆

)1/2

(2.9)
= G

(
mbh

rt
r⋆2mbh

rt3

)1/2

=
Gmbh

rt
r⋆
rt
. (2.19)

The apapsis4 ra (or apocentre) is the point of farthest excursion and is finite only
for bound orbits. While the periapsides of various parcels of bound debris are com-
pressed within a space no greater than r⋆ (this radial focussing of the orbits acts as an
“effective nozzle”, see Rosswog et al. 2009), the apapsides span an enormous region
of space, from the most bound orbit (ra ∼ rp2/r⋆) to infinity (for the marginally
unbound debris, which is on a parabolic orbit). This translates into very different
times of return to periapsis, from the shortest (τ ∼ 1 month) to infinity.

The apapsis of the most bound orbit can be calculated from the semimajor
axis (Eq. 2.44) as

ra = −Gmbh/2E− rp. (2.20)

Then, by using Eq. (2.16) to calculate the energy E of the most bound orbit,
E ∼ −Gmbhr⋆/rp2, we obtain ra ∼ rp2/2r⋆ − rp. Since rp/r⋆ ≫ 1, the
second term is negligible, leaving ra ∼ rp2/r⋆. In order to get a meaningful
scaling, we combine this result with Eq. (2.10) and Eq. (2.14), obtaining

ra ≈ 100 rp β−1
(

r⋆
R⊙

)(
mbh

106 M⊙

)1/3 ( m⋆

M⊙

)−1/3

, (2.21)

which gives us an idea of the typical ra/rp ratio.
The time of shortest return, Tmin, can be calculated by making the same as-
sumptions and then applying Kepler’s third law:

ω2a3 = Gmbh

Tmin
2 =

(2π)2a3

Gmbh

Tmin
(2.44)
=

2π
(
rp2/2r⋆

)3/2

(Gmbh)1/2

=
2πrp3

(Gmbh)1/2(2r⋆)3/2
, (2.22)

4The more common term apoapsis is not etymologically correct, because the Greek prefix ἀπό-
‘away from’ becomes ἀπ- or ἀφ- before unaspirated or aspirated vowels, respectively, and only keeps its
final ό before consonants (apocentre, but apapsis and aphelion).
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and by scaling rp with rt we get

Tmin
(2.9)
=

2π
(
rp/rt

)3 r⋆3mbh/m⋆

(Gmbh)1/2(2r⋆)3/2
(2.23)

≈ 41 days
( rp

rt

)3 ( r⋆
R⊙

)3/2 ( m⋆

M⊙

)−1 ( mbh

106 M⊙

)1/2

.

Compare this numberwith Eq. 3 fromUlmer (1999), where they get∼ 0.11
yr (40 days) with essentially the same scaling, and with Eq. 2.1 from Strubbe
2011, where they get ∼ 20 min, but scale rp with 3rs. We prefer scaling
with rt because the rp/rt ratio is more meaningful, as it defines the impact
parameter of the encounter (Eq. 2.14).

In addition to establishing a time scale on which the tidal disruption event can be-
come visible, the difference in the return times also has important implications for
modelling stellar tidal disruptions, as will be discussed in Sec. 3.1.3 (briefly, if there
is not enough resolution, simulation particles can return to periapsis one by one, at
different times, causing problems related to their statistical nature).

2.1.8 Binary breakup radius

If a stellar binary system of total mass mbin with initial separation a0 approaches the
SMBH, it will be broken apart if its centre of mass becomes closer than the breakup
radius (Miller et al., 2005; Sesana et al., 2009)

rbr ∼
(

3
mbh

mbin

)1/3

a0, (2.24)

an expression similar in form to the definition of the tidal radius (Eq. 2.9), but with
r⋆ replaced by a0. To order of magnitude, this distance can be estimated by Taylor-
expanding the gravitational acceleration due to the black hole around the position of
the closest star,

F(r + δr) = −Gmbh

r2
+

2Gmbh

r3
δr. (2.25)

We then assume the other star is at a distance r+ a0 from the black hole, and require
the tidal acceleration on the binary system to be equal to the mutual acceleration of
the two stars,

2Gmbh

r3
a0 ∼ Gmbin

a02

r3 ∼ 2mbh

mbin
a0

3, (2.26)
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which is approximately rbr in Eq. (2.24). The exact prefactor depends, of course, on
the mass ratio of the two stars and on their orbital motion. The factor of 3 above
is correct for a prograde binary on a circular orbit around the SMBH (Miller et al.,
2005), but it changes to 4 for weakly hyperbolic prograde orbits, and roughly 2 for
retrograde orbits (e.g., Hamilton & Burns, 1991, 1992).

2.2 Time scales

2.2.1 Dynamical time scale of a star

The dynamical time scale (also called free fall time scale) is the time in which a star
would collapse in the absence of any internal pressure, and can be computed as the
time it takes a test particle released at the surface (r = r⋆) to reach the centre (r = 0)
under the influence of the star’s gravitational acceleration (a ∼ −Gm⋆/r⋆2). From
the equations of motion

r(t) = r0 + v0t +
at2

2
(2.27)

we obtain, for r(0) = r⋆ and r(τdyn) ≡ 0,

τdyn =

√
2r⋆3

Gm⋆
. (2.28)

Up to a factor of∼ 2, this is equivalent to the usual definition found in the literature,
given in terms of the average density of the star,

τdyn =
1√
G ρ⋆

≈ 1 hr
(

m⋆

M⊙

)−1/2 ( r⋆
R⊙

)3/2

. (2.29)

τdyn is also the period of the fundamental oscillationmode of the star and, in general,
is the shortest time scale on which the stellar fluid can hydrodynamically react to the
processes in which it is involved.

2.2.2 Periapsis passage time scale

The time τper spent by the star near periapsis can be estimated by calculating the time
in which the star travels around half a circle with radius rp (πrp) with velocity vp
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(
√

2Gmbh/rp = c
√

rs/rp),

τper ∼
πrp
vp

=
π
c

( rp3

rs

)1/2

(2.9)
≈ 1 hr

(
r⋆
R⊙

)3/2 ( m⋆

M⊙

)−1/2 (β
1

)−3/2

, (2.30)

comparable to the dynamical time scale of the star for β ∼ 1.

2.2.3 Circularization time scale

As discussed in Sec. 2.1.7, return of the bound debris to periapsis begins after a time
Tmin. Following Ulmer (1999), we define the circularization time scale as closely
related to this orbital time scale of the most bound debris,

Tcir ≈ norb Tmin, (2.31)

with the small parameter norb being the number of orbits required for debris circular-
ization, which depends onhowwell angularmomentumcan be dissipated. Typically,
Eq. (2.23) gives

Tcir ≈ 0.1 yr norb

( rp
rt

)3 ( r⋆
R⊙

)3/2 ( m⋆

M⊙

)−1 ( mbh

106 M⊙

)1/2

. (2.32)

2.2.4 Radiation time scale

The radiation time scale is the time needed to accrete all of the bound debris (which
is∼ half the stellar mass) if the black hole accretes at the Eddington mass accretion
rate (Eq. 2.57) with radiative efficiency ε,

τrad =
1
2
m⋆c2ε
LEdd

(2.33)

≈ 22.5 yr
(

m⋆

M⊙

)(
mbh

106 M⊙

)−1 ( ε
0.1

)
. (2.34)

2.2.5 Two-body relaxation time scale

In the steep potential of the supermassive black hole, two-body stellar interactions
can be thought of as weakCoulomb collision, a term borrowed from plasma physics,
where the typical kinetic energy of the particles is too large for any individual ellastic
collision to produce a significant deviation of their trajectories. Such a deviation,
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however, can be the cumulative effect of many collisions over a typical relaxation
time scale τrel.

The same arguments hold for stellar interactions within the black hole’s radius
of influence rh (Eq. 2.7), andwewill derive τrel in the same spirit as Rosswog&Brüg-
gen (2007, Sec. 2.1.2). Let us assume that stars inside rh have an isotropic velocity
distribution, with the typical velocity v given as a function of the distance r to the
black hole by Eq. (2.39),

v ∼
(

Gmbh

r

)1/2

. (2.35)

During a stellar two-body encounter with impact parameter b, let us use the impulse
approximation: the gravitational acceleration is a ∼ Gm⋆/b2, the relative velocity
of the two stars is vrel ∼ v, the time scale for the interaction is δt ∼ b/vrel. The
encounter will then modify the velocity of the stars by

δv ∼ a δt ∼ Gm⋆

b2
b
vrel

∼ Gm⋆

bv
, (2.36)

although the square of this quantity is more meaningful, as δv itself can be both
positive and negative. In a time interval dt, a star collides at impact parameter bwith
all the stars in a cylindrical shell of radius b, thickness db, and length v dt, which
is the length covered by a star with typical velocity v in the time dt. The number of
interacting stars, assuming a number density n, is then 2π n b db v dt, giving the total
rate of change of (δv)2 as the integral

d(δv)2

dt
= 2π n v

∫ bmax

bmin

(δv)2 b db

(2.36)∼ 2π n G2m⋆
2

v
[ln b]bmax

bmin
(2.37)

The logarithm on the right is called the Coulomb logarithm and is usually repres-
ented by the symbol ln Λ ≡ ln(bmax/bmin). For tidal disruptions, bmax ∼ rh ∼
Gmbh/σ2 is the radius at which stars no longer feel the gravitational influence of
the black hole, while bmin ∼ Gm⋆/v2 is the radius at which the weak encounter
approximation no longer holds (so this perturbative approach, as well as the Fokker-
Planck approximation, break down). Ignoring factors of order unity, the time it takes
for the cumulative influences of the small δv’s to amount to a significant change of
order∼ v is

τrel =
v2

d(δv)2/dt
(2.37)∼ v3

G2m⋆
2n ln Λ

≈ 5 × 1010 yr
ln Λ

(
v

100 km s−1

)3 ( m⋆

M⊙

)−2 ( n
106 pc−3

)−1

(2.38)
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about an order of magnitude larger than the life span of a solar-type star.

2.3 Physical quantities

2.3.1 Specific orbital energy

The specific orbital energy E of a binary system is defined as the sum of their mu-
tual potential energy and total kinetic energy, divided by the reduced mass, μ =
mbhm⋆/(mbh + m⋆). Using the assumptions vbh = 0 and mbh ≫ m⋆ (valid for
TDEs),

E =

(
m⋆v⋆2 + mbhvbh

2) /2 − Gmbhm⋆/r
m⋆

=
v⋆2

2
− Gmbh

r
(2.39)

(2.47)
=

1
2
vr

2 +
1
2
L2

r2
− Gmbh

r
. (2.40)

The decomposition of v⋆ into radial (vr) and transverse (vt) velocities, and the re-
placement of the latter according to Eq. (2.47), will prove useful later on. The con-
servation lawofE, historically knownas the vis-viva equation, canbe used to simplify
the above expression, by using the fact that E is the same at both apsides (r = ra and
r = rp for an elliptic orbit):

va
2

2
− Gmbh

ra
=

vp
2

2
− Gmbh

rp
va

2

2
−

vp
2

2
=

Gmbh

ra
− Gmbh

rp
, (2.41)

and since at both apsides the velocity and position vectors are aligned, i.e. v⋆ ≡ vt,
Eq. (2.47) gives L = rava = rpvp and so

1
2
va

2
(

1 −
vp

2

va2

)
= Gmbh

rp − ra
rpra

1
2
va

2 rp2 − ra2

rp2 = Gmbh
rp(rp2 − ra2)
rp2ra(rp + ra)

1
2
va

2 = Gmbh
rp

ra(rp + ra)
. (2.42)

By using the definition of the semimajor axis, 2a = rp + ra, we obtain

1
2
va

2 = Gmbh
2a − ra
2ara

, (2.43)
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and back-substitution into Eq. (2.39) gives

E = Gmbh
2a − ra
2ara

− Gmbh

ra
= Gmbh

2a − ra − 2a
2ara

= −Gmbh

2a
. (2.44)

This expression of the orbital energy as a function of just the semimajor axis, and
in particular the equivalent a = −Gmbh/2E, will prove useful in computing the
orbital characteristics of the stellar debris after disruption.

2.3.2 Specific relative angular momentum

Thespecific relative angularmomentumLof twobodies is the cross product between
their relative position and their relative velocity. For a bound orbit, according to
Kepler’s second law of planetarymotion, the specific angularmomentum is twice the
area swept out per unit time by a chord from the primary to the secondary. Since the
total area of the ellipse (πab) is swept out in one orbital period (T = 2π

√
a3/Gm),

the specific angularmomentumLwill be equal to twice the area of the ellipse divided
by the orbital period, and using the definition of ellipse eccentricity,

e =
(

1 − b2

a2

)1/2

, (2.45)

we obtain

L =
2πab

2π
√

a3

G(mbh+m⋆)

= b
√

G(mbh + m⋆)

a

= a
√

1 − e2
√

G(mbh + m⋆)

a
≈

√
Gmbha(1 − e2), (2.46)

where we assumed the central body to be much more massive (mbh ≫ m⋆). The
black hole is essentially at rest, the motion of the star is restricted to a plane, and
the (constant) orbital angular momentum is equal to the angular momentum of the
star with respect to the black hole, written in terms of its transverse velocity vt and
distance r to the black hole as

L = rvt. (2.47)
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We will also use the angular momentum of a circular orbit with energy E,

Lc
2 = r2Gmbh

r
(2.44)
=

G2mbh
2

2E
. (2.48)

2.3.3 Light curve

The light curve of a tidal disruption event has a characteristic “outburst-like” evolu-
tion (fast rise and slow decay) and is powered by fall-back accretion, whose rate can
be estimated using simple analytic arguments (Rees, 1988; Evans&Kochanek, 1989;
Phinney, 1989), which we will re-derive here. First, the bound fluid elements return
to periapsis after a Keplerian period T linked to their semimajor axis a by Kepler’s
third law,

a3 = Gmbh

(
T
2π

)2

. (2.49)

Since the orbital energy E is directly related to a by Eq. (2.44), one can also write it
as a function of T,

E
(2.44),(2.49)

= −1
2
Gmbh (Gmbh)

−1/3
(

T
2π

)−2/3

= −1
2

(
2πGmbh

T

)2/3

. (2.50)

In order to estimate the accretion rate ṁ one needs tomake a number of fundamental
assumptions. First, thematerial that comes back to periapsis loses energy and angular
momentum on a time scale much shorter than T, thus suddenly accreting on to the
SMBH. This translates into the mass accretion rate ṁ ≡ dm/dt being equal to the
mass distribution of return times, which is given by

dm
dT

≡ dm
dE

dE
dT

(2.50)
= −dm

dE
1
2
2
3

(
2πGmbh

T

)−1/3 (
−2πGmbh

T2

)
=

(2πGmbh)
2/3

3
dm
dE

T−5/3. (2.51)

The second assumption is that the energy distribution is uniform, i.e. dm/dE is ap-
proximately constant. Thiswas only implied byRees (1988); Phinney (1989) argued
that E = 0 (around which the distribution of specific energies is centred) is not
special, therefore dm/dE should be roughly constant around it; later on, numerical
simulations confirmed the assumption (e.g., Evans & Kochanek, 1989; Ayal et al.,
2000; Ramirez-Ruiz & Rosswog, 2009), with some caveats discussed below. If the
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derivative is constant, it can be easily computed from the energy spread of the entire
stellar mass,

dm
dE

≈ m⋆

2ΔE
, (2.52)

where the factor of 2, taken from Evans & Kochanek (1989), corresponds to k = 2
in Eq. (2.16). Using Eq. (2.16) to explicitely write ΔE, we obtain

dm
dT

(2.51),(2.52)
=

(2πGmbh)
2/3

3
m⋆rp2

2Gmbhr⋆
T−5/3, (2.53)

and by writing Gmbh in terms of Tmin using Eq. (2.22), i.e.

(Gmbh)
−1/3 =

(2π)−2/3rp−2

(2r⋆)−1Tmin
−2/3 , (2.54)

we get

dm
dT

(2.53),(2.54)
=

(2π)2/3m⋆rp2

3 × 2r⋆
(2π)−2/3rp−2

(2r⋆)−1Tmin
−2/3T

−5/3,

=
1
3

m⋆

Tmin

(
T

Tmin

)−5/3

(2.55)

≈ 3 M⊙ yr−1
( rp

rt

)−3 ( r⋆
R⊙

)−3/2 ( m⋆

M⊙

)2

(
mbh

106 M⊙

)−1/2 ( T
Tmin

)−5/3

,

similar to Eq. 3 in Evans & Kochanek (1989).
This value should be compared with the Eddington accretion rate, calculated

from the Eddington (1921) luminosity for pure ionised hydrogen,

LEdd =
4πGmbhmpc

σT

≈ 1.25 × 1044 erg s−1
(

mbh

106 M⊙

)
, (2.56)

according to

LEdd = ε ṁEddc2

ṁEdd ≈ 0.022 M⊙ yr−1
(

mbh

106 M⊙

)( ε
0.1

)−1
, (2.57)

where ε is the efficiency of conversion of gravitational binding energy into radiation
during the accretion process.
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Figure 2.5: The return rate of the debris exhibits a characteristic “outburst-like”
evolution, consisting of a fast rise (of the order of days) and a slow decay (of the order
of years). If the circularization time scale is much shorter than the fallback time scale
– and this question, far from being answered, is currently being pursued by a number
of groups –, the light curve will exhibit a very similar behaviour. This plot shows the
Ṁ curves for TDEs with 0.55 ≤ β ≤ 11. While β has an obvious influence on the
rise of the Ṁ curve (in both slope and maximum value), all curves with β ≳ 1 exhibit
essentially the same decay governed by a t−5/3 power law (oblique, gray dotted lines).
This figure was produced by the author, using data from our own simulations, and is
essentially a simplified version of the Newtonian panel of Fig. 8 in Paper I.

More recently, it has been shown that the energy distribution need not be, and is in
fact in general not uniform, but depends on the internal structure of the star (e.g.
Lodato et al., 2009, Ramirez-Ruiz & Rosswog, 2009; see also our results presented
in Fig. 2.3). This produces deviations from the canonical scaling at early times, but
the light curve eventually “settles” into the equilibrium t−5/3. Hayasaki et al. (2012)
found that for elliptic orbits there exists a critical value of the orbital eccentricity e
below which all the stellar debris remains bound to the black hole. This is because
E is a function of a (Eq. 2.44), which depends on e as a = rp/(1 − e), thus E =
−Gmbhβ(1 − e)/2rt. For a parabolic orbit E = 0, but for an elliptic one it can be
smaller than ΔE if

−Gmbh

2rt
β(1 − e)

(2.16)
< −Gmbh

rt
r⋆rt (2.58)

−β(1 − e)
(2.9)
< −2

(
m⋆

mbh

)1/3

(2.59)

e < 1 − 2
β

(
m⋆

mbh

)1/3

. (2.60)

In such cases, even a spread ΔE in specific energies will not unbind any debris. Al-
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thoughwe argued thatmost tidal disruptions involve nearly parabolic orbits, the crit-
ical e given above is very close to 1: for β = 1, m⋆ = M⊙ and mbh = 106 M⊙, the
condition becomes e < 0.98, which gives a plausible orbit. For high, but sub-critical
eccentricities, Hayasaki et al. (2012) find a significant deviation from the canonical
t−5/3 mass fallback rate, caused by the fact that debris falls back much faster than in
the standard parabolic scenario. In some of their simulations, the resulting accretion
rate exceeds the Eddington rate by as much as 4 orders of magnitude.

2.3.4 Optical depth

Inwhat followswewill derive an order-of-magnitude estimate for the typical photon
optical depth of a tidal disruption debris “cloud”. For simplicity, we will assume a
spherical cloud of uniform density and only consider Thomson scattering.

For a typical β = 1, we would expect the size of the debris cloud to be of the
order of a tidal radius. This is indeed confirmed by our simulations, and appears
to hold true even for deeper encounters (e.g., β = 5). We will therefore take the
characteristic size to be L ∼ 1013 cm.

The simplest analytical estimate for the typical density after disruption is ob-
tained by imagining that the entire stellar mass is spread uniformly over a sphere
of radius L. For m⋆ = M⊙ and the value of L considered above, we obtain ρ =
m⋆/(4πL3/3) ∼ 10−6 g cm−3. Detailed numerical simulation evidently result in a
more complex profile, but the typical density of the resulting disc is of the order of
∼ 10−7 g cm−3. We will consider the latter, since it is the smaller of the two, and
leads to a lower optical depth.

For the typical cross-sectionwe take theThomson cross-section for electron scat-
tering: σ ≡ σT = 8π/3

(
αℏc/mec2

)2 ∼ 6.65 × 10−29 m2. The number density of
the debris can be computed from itsmass density by assuming e.g. that it is composed
entirely of hydrogen, such that n = ρ/mp ∼ 6 × 1016 cm−3. The typical mean free
path of a photon is then simply given by l = 1/ (nσ) ∼ 107 cm. This leads to a
typical optical depth of τ ∼ L/l ∼ 106, which justifies the usual assumption that
the resulting debris is completely optically thick.

2.3.5 Peak wavelength

As the matter plunges towards the black hole, the intense frictional heating can raise
the fluid temperature up to≳ 106 K in the vicinity of the event horizon (e.g., Bon-
ning et al., 2007). FollowingWien’s displacement law,we can compute thewavelength
of the peak blackbody emission as

λmax =
b
T

≈ 2.9 nm
(

T
106 K

)−1

, (2.61)
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corresponding to 0.43 keV,which is in the softX-ray part of the spectrum (approxim-
ately 0.1 to 5 keV, or 0.2 to 10 nm; for reference, the hard X-rays have energies from
5 to 10 keV, or wavelengths from 0.01 to 0.2 nm). On the other hand, the effective
temperature of material radiating at Eddington luminosity from the tidal radius can
be computed with the Stefan–Boltzmann law,

Teff ≈
(

LEdd

4πrt2σSB

)1/4

(2.9),(2.56)
≈ 2.5 × 105 K

(
mbh

106 M⊙

)1/12 ( r⋆
R⊙

)−1/2 ( m⋆

M⊙

)−1/6

(2.62)

(compare with Eq. 8 in Ulmer 1999). This corresponds to blackbody radiation
peaking at 11.6 nm, or 0.1 keV, in the far UV part of the spectrum. Eq. (2.62) reveals
a very weak scaling of the effective temperature with the black hole mass, so all flares
caused by disruptions of similar stars would have comparable temperatures.

Loeb & Ulmer (1997) present a more realistic post-disruption model, in which
the rotating, radiation-pressure dominated torus at rp is surrounded by an Edding-
ton envelope: a quasi-spherical, optically thick cloud. Since the envelope has a very
low density (≲ 10−12 g cm−3), Thompson opacity dominates, with bound-bound,
bound-free, and free-free opacities being relatively unimportant (e.g., Burger & La-
mers, 1989). Even though the emission from the torus ismainly in theX-rays and far
UV as shown above, this radiation is processed through the surrounding envelope,
and re-emitted mostly in the optical-UV band. Because of the very high opacity of
the envelope, its emission spectrum is expected to be thermal to first order. Assuming
the radius of the envelope to be∼ 102 rt, its effective temperature can be calculated
using Eq. (2.62) as

Teff ∼ 1.4 × 104 K, (2.63)

peaking in the UV.

2.4 Disruption rates

2.4.1 The stellar cluster model

The mutual interactions between various stellar distributions and a central super-
massive black hole have been studied in detail ever since the pioneering work of Bah-
call &Wolf (1976, 1977), who computed a quasi-steady-state solution for the stellar
distribution by solving the one-dimensional, steady-state Fokker-Planck equation.

An approximation to the collisional Boltzmann equation, the Fokker-Planck
equation describes the cumulative effect of two-body relaxation and energy
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exchange between stars and the black hole on the stellar distribution func-
tion, in the limit where gravitational interactions between stars are assumed
to be weak. We will derive its simplest form in the next section.

Their resulting stellar density profile shows a characteristic “cusp” (a density distri-
bution that formally diverges at the origin), now called a Bahcall-Wolf cusp, which
scales as n(r) ∝ r−7/4 inside the black hole’s radius of influence.

The model was then refined by introducing the concept of loss cone (Frank &
Rees 1976; see next section) and using the Fokker-Planck equation to calculate the
rate at which the loss cone, depleted by stellar distruptions, is refilled (e.g., Lightman
& Shapiro, 1977). More recently, Magorrian et al. (1998) used high-resolution ima-
ging and spectroscopic results from the Hubble Space Telescope to estimate masses
for the stellar distributions and SMBHs of 36 nearby galaxies. Syer & Ulmer (1999)
used these results together with the Fokker-Planck formalism to calculate tidal dis-
ruption rates for real galaxies, assuming spherical symmetry and isotropic velocity
dispersions. Later on,Magorrian&Tremaine (1999) performed similar calculations
assuming axisymmetry, obtaining more optimistic disruption rates. The most recent
disruption rate calculations for real galaxies were performed by Wang & Merritt
(2004), following the revision of the aforementioned observational results.

Studies based on the Fokker-Planck method have been verified by numerical
methods, such as Monte-Carlo integrations (e.g., Shapiro & Marchant, 1978; Sha-
piro, 1985) and N-body simulations (e.g., Brockamp et al., 2011; Vasiliev & Merritt,
2013). The latter are so computationally expensive that they have only become feas-
ible in recent years.

Theory predicts that under the gravitational influence of the black hole a high
density cusp is formed at the centre of the surrounding star cluster, up to∼ the radius
of influence (Eq. 2.7). Beyond this distance, the gravitational influence of the black
hole is so small that the distribution function of the stellar orbits is close to that of an
isothermal sphere, with stellar density scaling as n(r) ∝ r−2. The ubiquity of high-
density cusps is nowadays well established by observations (e.g., Alexander, 1999;
Genzel et al., 2003).

In what follows we will derive a typical tidal disruption rate through order-of-
magnitude calculations, by assuming a spherically symmetric gravitational potential,
a linear stellar distribution within the radius of influence, n(r) = n0(rh/r), and
isotropic stellar velocity dispersions at the radius of influence.

2.4.2 Loss cone theory

Having defined the specific orbital energy and angular momentum, let us briefly
summarize the loss cone theory, widely used to estimate tidal disruption rates (e.g.,
Magorrian&Tremaine, 1999;Wang&Merritt, 2004; Brockamp et al., 2011), using
the simple stellar cluster model described above.
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Figure 2.6: Two representations of the loss cone: a) A star with a given orbital
trajectory lies within the loss cone if the angle ϑ between the position and the velocity
vectors falls within the range of the critical ϑlc; b) In the space spanned by the energy
and angular momentum, the loss cone contains orbits with angular momenta L ≤ Llc,
given in terms of R ≡ L2/Llc(E)2. This figure reproduces Fig. 1 of Merritt (2013).

Let each star be described by its specific energy E and angular momentum L. The
concept of “loss cone”, first applied to tidal disruptions of stars by Frank & Rees
(1976), refers to the portion of the (E,L) phase space containing orbits with periap-
sides rp ≤ rt, in other words containing stars that will be captured by the black hole.
For stars not bound to the black hole, the loss cone is essentially a “loss column”,
because the fate of the star depends on whether L is smaller than a critical value Llc,
independent of its energy E (e.g., Cohn & Kulsrud, 1978).

A star with given specific energy E reaches a periapsis velocity given by

vp
2 (2.39)

= 2
(
E+

Gmbh

rp

)
. (2.64)

In order for the star to have a certain impact parameter β, the periapsis distancemust
be rp = rt/β, which places a constraint on the specific angular momentum,

Llc
2 (2.47)

= rp2vp
2

(2.39)
= 2

(
E+

Gmbh

rp

)
rp2

≈ 2Gmbhrt/β, (2.65)

where the term E (of order σ2) is much smaller than Gmbh/rp for a solar-type star,

E≪ Gmbh/rp. (2.66)
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Thus, stars with energies E and angular momenta L ≤ Llc will be captured by the
black hole. Evidently, only a fraction of these stars will be disrupted (as some may
plunge directly into the black hole, if rp < re), but to simplify matters we will ignore
this aspect in the following discussion.

We will demonstrate the use of the loss cone theory in predicting disruption
rates by using the simplest possible steady-state scenario – the spherical galaxymodel
presented in the previous section. Let the stellar distribution in phase space be rep-
resented by the distribution function f(r, v), defined such that

f(r, v) d3r d3v (2.67)

is the probability of finding a star within a phase space volume d3r d3v. Jean’s the-
orem (see, e.g., Sec. 4.2 of Binney & Tremaine, 2008) states that in a spherical po-
tential, the distribution function will only depend on the phase-space coordinates
through the integrals ofmotionE andL: f(r, v) can bewritten as f(E,L). We already
have constraints on these quantities for the stars that are in the loss cone, seeEqs. (2.65)
and (2.66). We can then write the number of stars N(E,L)with energies betweenE
and E+ dE and angular momenta between L and L+ dL as

N(E,L)dE dL =

∫
V

f(E,L) d3r d3v (2.68)

Following Lightman&Shapiro (1977), wewrite the volume elements d3r and d3v in
coordinate space andvelocity space, respectively, as follows. For the coordinate space,
we assume spherical symmetry, hence

∮
dΩ = 4π and the only spatial coordinate

left is r,

d3r = 4π r2dr. (2.69)

For a given spatial location r, the velocity can be projected along three directions:
vr parallel to r, vt perpendicular to r, and an angle φ between vt and a reference
direction. We assume the distribution function to be independent of φ, thus taking∫

dφ = 2π out of the integral, and leaving the volume element in velocity space as a
thin ring of height dvr, radius vt and thickness dvt,

d3v = 2π vt dvt dvr
(2.47),(2.40)

= 2πLdL
r2

dE
vr

(2.70)
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Using this result5, we can rewrite Eq. (2.68) as

N(E,L) dE dL = 8π2
∫

f(E,L) r2drL dL
r2

dE
vr

= 8π2 f(E,L) L dL dE
∫

dr
vr
. (2.71)

To calculate the integral on the right, let us consider the orbital velocity as a function
of radius. The function is then defined on the interval [rp, ra]. At each point r, by
choosing a sufficiently small dr, we can approximate the time inwhich the star travels
the distance dr by dr/vr(r). The integral of this quantity, from rp to ra, gives half of
the orbital period, which needs to bemultiplied by two to account for the return trip
back to rp:

2
∫ ra

rp

dr
vr(r)

= T(E,L). (2.72)

We therefore replace the integral by the half-period of the orbit,

N(E,L) dE dL = 4π2 f(E,L)T(E,L) L dL dE, (2.73)

whereT(E,L) is the radial period of an orbit with energyE and angularmomentum
L. For nearly radial orbits, we can approximate T(E,L) by T(E) ≡ T(E, 0), which
is given by Eq. (2.50) (compare with Eqs. 3, 4 in Magorrian & Tremaine 1999). We
also used the fact that f(E,L) is essentially constant around the orbit of a star to pull
it out of the integral. In order to find the number of stars Nlc in the (full) loss cone
we need to integrate Eq. (2.73) with respect to L, from L = 0 to L = Llc, obtaining

Nlc(E) dE = 2π2 f(E,L) T(E) Llc
2 dE. (2.74)

In order to estimate its numerical value, we approximate the distribution function
according to Eq. 9 in Magorrian & Tremaine (1999) (for a more detailed derivation
see Strubbe, 2011, Sec. 4.3.1); we set the parameter α = 0, such that the number
density of stars is n(r) = n0(rh/r):

f(E) ∼ (2πσ⋆2)−3/2 n0

(
E

σ⋆2

)−3/2

, (2.75)

5There seems to be a factor of 2 “magically” appearing here, from time to time, throughout the
literature. For instance, Lightman & Shapiro (1977, Eq. 30) give 2π, as derived above; one year
later, Shapiro & Marchant (1978, Eq. 8) present the exact same equations but give 4π; more recently,
Magorrian & Tremaine (1999, Eq. 4) and Strubbe (2011, Eq. 4.14) also use 2π, but write LdL as
Lc

2d(L2/Lc
2) ≡ 2LdL, which effectively gives a 4π as well. This distinction modifies all subsequent

equations and the disruption rate by a factor of two.
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and using T(E) from Eq. (2.50) and Llc
2 from Eq. (2.65) we write Nlc(E) as

Nlc(E) = 2π2(2πσ⋆2)−3/2 n0

(
E

σ⋆2

)−3/2 2πGmbh

(−2E)3/2

2Gmbh

β
r⋆
(

mbh

m⋆

)1/3

(2.76)

=
√

πG2n0mbh
7/3E−3r⋆m⋆

−1/3β−1

≈ 0.1
(

n0

106 pc−3

)(
mbh

106 M⊙

) 7
3
(
E

σ⋆2

)−3 ( σ⋆
100 km/s

)−6

(
r⋆
R⊙

)(
m⋆

M⊙

)− 1
3

(β)−1 ,

which only differs by a factor of∼ 5 from the result of themore involved calculations
presented by Magorrian & Tremaine (1999) in their Eq. 10. The last thing needed
to compute the disruption rates is the typical time-scale for emptying a full loss cone,
which is approximately the Keplerian period of an orbit at rh,

Tlc
2(E) =

(2π)2rh3

Gmbh
(2.7)
= (2π)2(Gmbh)

2σ−6

Tlc(E) ∼ 104 yr
(

mbh

106 M⊙

)(
σ

100 km s−1

)−3

. (2.77)

Finally, the flux of stars into the tidal radius when the loss cone is full is simply
F(E) = Nlc(E)/Tlc(E),

F(E) ∼ 10−5 yr−1
(

n0

106 pc−3

)(
mbh

106 M⊙

) 4
3
(
E

σ⋆2

)−3

(
σ⋆

100 km/s

)−3 ( r⋆
R⊙

)(
m⋆

M⊙

)− 1
3

.

Integration over E/σ⋆2 from 0 to 1 then gives the stellar disruption rate,

F ∼ 10−5 yr−1
(

n0

106 pc−3

)(
mbh

106 M⊙

) 4
3
(

σ⋆
100 km/s

)−1 ( r⋆
R⊙

)(
m⋆

M⊙

)− 1
3

,

(2.78)
which is comparable to Eq. (2) presented by Rees (1988).

We point out the steep inverse dependence ofNlc onE in Eq. (2.76): the density
of the stars in the loss cone declines at large E (i.e., close to the black hole). It turns



2.4. Disruption rates 33

out that the same happens for very small E (mainly because the number of stars
bound tightly to the hole is extremely small), and that there is a critical energy cor-
responding to the critical distance rh where Nlc peaks (e.g., Magorrian & Tremaine,
1999). This means that most disrupted stars come from a distance ∼ rh (of the
order of parsecs) and have an orbital energy ∼ Eh = −Gmbh/2rh. Comparing
this with the energy spread of the debris (Eq. 2.16), ΔE ∼ Gmbhr⋆/rt2, and using
rt/r⋆ ∼ 102 (Eq. 2.10), we conclude that the typical orbital energy of a disrupted star
is smaller than the energy spread after disruption by a factor of∼ rh/(102 rt), more
than 6 orders of magnitude for a solar-type star. This justifies the usual assumption
that disrupted stars approach the black hole on parabolic orbits, since the energy of
the debris after periapsis crossing, ranging from−ΔE to+ΔE, is essentially centred
aroundEh. It also explains the statementmade by Rees (1988) that half of the debris
becomes bound to the hole, while the other half escapes, regardless of any other
details of the encounter.

It should be noted, though, that massive perturbers (e.g., a cluster of stellar
black holes formed by mass segregation) may kick marginally unbound stars
just enough to place them on an elliptic orbit.

Our simple estimations assumed spherical symmetry, isotropy of σ⋆ at rh, a thermal
distribution of the stars, and that the loss cone was replenished with stars at least
as fast as it was depleted through disruptions. In general, the stellar distribution is
not thermal: if the most important mechanism for loss cone replenishment is two-
body relaxation, the cause is that the two-body relaxation time scale – larger than
the Hubble time, see Eq. (2.38) – is longer than the age of the system. In particular,
close to the black hole, where the stellar population is dominated by young B stars,
the relaxation time is much longer than the maximum stellar lifespan (∼ 108 yr). If
there are other processes at play, they may refill the loss cone faster by sending stars
on chaotic orbits, but in that case the chance for thermalization is even smaller.

A note on how the Fokker-Planck equation is used to compute the flux of
stars into the loss cone at each energy (this is treated in detail in Sec. 7.4 of
Binney&Tremaine, 2008). Let the distribution function f(r,E,L, t) repres-
ent the stellar distribution (E,L) in the smooth potential Φ(r) of a central
supermassive black hole at time t. In the absence of collisions, f obeys the col-
lisionless Boltzmann equation df/dt = 0, with the derivative taken along the
phase-space path of the star. The equation can be written in a more familiar
form (while also taking into account symmetries like ∂f/∂φ = 0) as

∂f
∂t

+ vr
∂f
∂r

+ Ė
∂f
∂E

+ L̇
∂f
∂L

= 0. (2.79)

However, in a dense stellar environment, collisions between stars occur suf-
ficiently often to change the phase-space density on the time scale of the
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relaxation time, and can be quantified through an encounter operator Γ[f].
Using this operator, one can then solve the full Boltzmann equation df/dt =
Γ[f] (see Eqs. 7.46–7.47 in Binney & Tremaine 2008). This is a complicated
problem, given the integro-differential character of the Boltzmann equation,
and simpler expressions have been developed based on physical arguments.
The Fokker-Plank equation, borrowed from plasma physics, is a good ap-
proximation in situations where gravitational encounters are weak, i.e. their
impact parameter obeys b ≫ bmin, with bmin ≡ Gm⋆/v⋆2 being the im-
pact parameter required to produce a change in velocity of order unity. In
other words, any two-body collision is assumed not to alter the velocities
of the stars too much (this is true since, by definition, significant cumulat-
ive alterations occur on the two-body relaxation time scale). The weak en-
counters approximation allows us toTaylor expand the collision operator Γ[f]
in powers of (ΔE/E), (ΔL/L) and (Δt/t) (see, e.g., Lightman & Shapiro,
1977, Sec. IIIb),

Γ[f] ≈ − ∂

∂E
[f⟨ΔE⟩]− ∂

∂L
[f⟨ΔL⟩] + 1

2
∂2

∂E2 [f⟨(ΔE)
2⟩]

+
1
2
∂2

∂L2 [f⟨(ΔL)
2⟩] + 1

2
∂2

∂E∂L
[f⟨(ΔEΔL)⟩] (2.80)

A further simplifying assumption has been proven in Eq. (2.65): the con-
figuration of the loss cone is virtually independent of E, except for the most
tightly bound stars (which are very few). Dropping all terms containing∂/∂E,
one can thereforewrite theFokker-Planck equation in itsmost common form,
as

df
dt

= − ∂

∂L
[f⟨ΔL⟩] + 1

2
∂2

∂L2 [f⟨(ΔL)
2⟩]. (2.81)

Further continuation of the derivation is beyond the scope of this thesis: it
suffices to say that one either solves Eq. (2.81) numerically (e.g., through a
Monte-Carlo simulation, see Shapiro & Marchant, 1978, Sec. III), or ap-
proaches it analytically bymaking further assumptions about the terms ⟨ΔL⟩
and ⟨(ΔL)2⟩ (which are diffusion coefficients, since they measure the expec-
ted rate of change in stellar velocities) (e.g., Strubbe, 2011, Sec. 4.3).

2.4.3 The inner parsec of the Galactic Centre

The inner parsec of theGalacticCentre lies completely within the radius of influence
of the black hole, see Eq. (2.7). Measurements of the surface density distribution of
stars (i.e., the number of stellar sources per square arcsecond) as a function of the
projected separation from Sgr A* are best fitted by a broken power law,

ρ⋆(r) ∼ r−α, (2.82)
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with α ≈ 2 for r ≳ 0.4 pc and α ≈ 1.4 inside the inner ∼ 0.4 pc (Genzel et al.,
2003). This confirms the theoretically predicted stellar density cusp mentioned in
Sec. 2.4.1. The region outside the cusp has a mixture of old, metal-rich stars (an
extension of the old bulge population), and intermediate-age and young stars: the
old stars are dynamically relaxed and followgeneral galactic rotation, while the young
stars show counter-rotation (Genzel et al., 1996). The inner cusp, however, exhibits a
featureless luminosity function due to a lack of old, low-mass stars, and is dominated
by unrelaxed blue supergiants (Genzel et al., 2000). Spectrally, these stars present
distinctive helium emission lines and a lack of hydrogen lines, specific ofWolf-Rayet
stars: massive (m⋆ ∼ few×10 M⊙) stars with lifespans of few×106 yr undergoing
rapid mass loss by strong stellar winds, which remove their hydrogen envelopes and
reveal the helium-rich cores. In our Galaxy, these young stars are grouped in two
counter-rotating disc-like structures around the black hole, strongly inclined relative
to each other, but with the same stellar content, indicating that they formed at the
same time. A plausible scenario for their formation is that 5–8million years ago two
gas clouds fell towards the Galactic Centre, collided, were shock compressed and
subsequently formed two rotating accretion discs orbiting the SMBH (Genzel et al.,
2003).

The inner 0.04 pc does not host any bright giants, red or blue, nor discs of stars,
but is home to some tens of isotropically distributed faint blue stars called “S-stars”,
after their identifying labels. Spectroscopically, the S-stars are B0–B9main-sequence
stars with spins similar to those of Solar neighbourhood B-type stars. Of particular
importance is the brightest S-star, labelled S2 or S0-2, orbiting the SMBH in 15.9
years on an eccentric (e = 0.89) orbit with periapsis rp ≈ 120 AU and maximum
orbital velocity in excess of 5000kms−1, andwhichwas thefirst S-star to be observed
for a full orbital period (Ghez et al., 2008). S2 is a transitional O8-B8 star of mass
m⋆ ∼ 15 M⊙, effective temperatureT ∼ 3×105 K, intrinsic bolometric luminosity
L ∼ 103 L⊙ and amain-sequence life span of∼ 107 yr (Gillessen et al., 2009b). All
the other stars in the S-cluster are less massive and hence cooler, fainter and longer-
lived: the “typical” S-star would be a B2 main-sequence star of mass m⋆ ∼ 10 M⊙,
radius of r⋆ ∼ 4.5 R⊙ and main-sequence life span of ∼ 2 × 107 yr (Alexander,
2005).

The S-stars have been tracked since 1992 at the Very Large Telescope (VLT) and
since 1995 at the Keck telescope (Eckart &Genzel, 1996; Ghez et al., 1998), and are
used as test particles for the gravitational potential of the black hole Sgr A*.

In 2012, a new S-star labelled S0-102 was discovered to have an even shorter
period than S2 (Meyer et al., 2012). S0-102 is on an eccentric (e = 0.68) orbit
with period of only 11.5 years, whichmeans it can reach orbital velocities in excess of
∼ 12000kms−1. It is also the secondS-star tohave its orbit fully determined in three
dimensions, and together with S2 is currently being used to observe post-Newtonian
effects such as gravitational redshift, orbital precession, and frame-dragging.
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Despite their importance, the formation and nature of these young stars is still a
puzzle and subject of ongoing studies, bothobservationally (e.g., Perets&Gualandris,
2010) and numerically (e.g., De Colle et al., 2012a).

2.4.4 Stellar processes near supermassive black holes

The large-scale dynamics within the black hole’s radius of influence rh (Eq. 2.7) is
determined by the superposition of the black hole’s smooth gravitational potential
and the combined potential of all other stars. When two stars approach each other
close enough for their mutual gravitational attraction to overcome the gradient of
the background potential, they are involved in a two-body interaction, or stellar
“collision”, even if they do not physically collide. Since the stellar density in the
Galactic Centre is unusually high (≃ 108 M⊙ pc−3 compared to 1 M⊙ pc−3 in
the Solar neighbourhood), two-body interactions occur frequently by galactic stand-
ards, which led Alexander (2003) to coin the term “stellar collider” for the inner
part of this region. The collision process is often also called two-body scattering
because it leads to a redistribution of the orbits (technically, of energy and angular
momentum). However, in the steep potential well of the SMBH, energy equiparti-
tion cannot be achieved: in the long term, two-body interactions will tend to slow
down heavier stars and speed up lighter ones. Since the Keplerian orbital radius
only depends on the velocity – as r ∼ Gmbh/v2, through the specific energy, see
Eqs. (2.39) and (2.44) –, heavy stars will tend to “sink” towards the Galactic Centre,
while lighter stars will drift outwards. In due time, this leads to mass segregation,
with the vicinity of the SMBHbecomingpopulatedmainly byheavy stellar remnants
(the exact steady-state solution has a dependence on heavy-to-light stellar ratio and
the unbound population number ratio; this leads to a weak segregation and a strong
segregation solution, with very different density profiles; see Alexander & Hopman,
2009 for a discussion). This effect is further enhancedby the essentially unlimited life
span of these compact objects (much longer than the Hubble time) in comparison
to the shorter stellar life spans.

The existence of a cluster of ∼ 2 × 104 black holes at the Galactic Centre
was speculated by Miralda-Escudé & Gould (2000) based on theoretical ar-
guments, though it has not yet been observationally confirmed. This lack
of observable X-ray emission, probably linked to radiatively inefficient ac-
cretion of the cold gas in the Galactic Centre, has been used to put an upper
limit of∼ 4×104 on the black hole population in this dense cusp (Deegan&
Nayakshin, 2007). Other possible manifestations of these stellar black holes
include gravitationalmicrolensing (Chanamé et al., 2001) and the dynamical
effect on the stellar population (i.e., the mass segregation itself ).
To date, the closest magnetar detected in the vicinity of Sgr A* is SGR1745–
2900 (with a period of 3.76 s, located at a distance of ≈ 2.4 arcseconds,
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or 0.09 pc from the Galactic Centre; see Mori et al., 2013; Kennea et al.,
2013). Its potential for novel tests of GR effects (such as the cosmic censor-
ship conjecture and the no-hair theorem for Kerr black holes), independent
of the distanceR0 to theGalactic Centre, is unprecedented (Liu et al., 2012).
Within a distance of ∼ 200 pc from the SMBH, Lazio et al. (2003) report
the detection of only 10 candidate pulsars. The scarcity of observations has
been primarily explained by the extreme scattering of radio waves by the ion-
ized interstellarmedium in the inner hundred parsecs of the galaxy (Eatough
et al., 2013).
Simple estimates of the formation rate of black hole–pulsar binaries via three-
body exchange interactions indicate that a handful of these systems should
also be present in the central parsec of our galaxy (Faucher-Giguère & Loeb,
2011). Thedetection of such a systemwould be a significant event, since only
recentlyLIGOmayhave started todirectly observe suchbinaries, though still
without a definitive confirmation (e.g., Castelvecchi, 2019).
Anumber of stellar black hole binaries are also expected to formout of gravit-
ational wave emission during black hole encounters, with a detectable coales-
cence rate as high as∼ 1−102 yr−1 (O’Leary et al., 2009)with the upcoming
Advanced LIGO gravitational wave detector (e.g., Waldman, 2011).

The relaxation process can however be accelerated bymassive nearby perturbers such
as star clusters,molecular clouds, stellar blackhole clusters (Miralda-Escudé&Gould,
2000), intermediate mass black holes (Zhao et al., 2002), or, where the orbits are
nearly Keplerian, by resonant relaxation (Rauch & Tremaine, 1996).

Such self-gravitating systems have a “negative heat capacity” (i.e., if energy is re-
moved from the system then its kinetic energy, or “temperature”, actually increases):
the virial theorem (Clausius, 1870) states that the average potential and kinetic ener-
gies are related by Epot = −2Ekin, or, conversely, that Etot = Epot + Ekin = −Ekin,
and so ifEtot changes by (−dE),Ekin will increase by (+dE). As two-body scattering
processes draw energy out of the system, either by ejecting lighter stars or by diffusion
to higher energies (evaporation), they lead to a more bound and compact system,
with an increased collision rate, and therefore to even higher energy losses by the
system. This runaway process, named “gravothermal catastrophe” or “core collapse”,
can lead to the formation of an extremely dense stellar core surrounded by a diffuse
extended halo.

Closer to the black hole, as the density increases, effects related to the finite size
of the stars become important. In particular, very close two-body interactions can
lead to tidalwaves,mass stripping, and even tidal capture of the two stars into a tightly
bound binary. For a star in orbit around the SMBH, the Keplerian orbital velocity
(∼

√
Gmbh/r) exceeds the escape velocity from the star’s surface (∼

√
2Gm⋆/r⋆)
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at a distance

r ∼ 10−2 pc
(

r⋆
R⊙

)(
m⋆

M⊙

)−1 ( mbh

106 M⊙

)
. (2.83)

All stars that orbit the SMBH closer than that will collide on hyperbolic orbits, ex-
tracting energy and angular momentum from their orbit but continuing on separate
ways. The energy can be radiated away between subsequent encounters, but angular
momentum is likely to be dissipated only on a time scale comparable to the stellar life
span, leading to a stochastic spin-up of the high density cusp stars, up to a significant
fraction of their breakup velocity (e.g., Alexander & Kumar, 2001).

Head-on collisions between stars are probably the rarest, but theGalacticCentre
is the place where they are most likely to occur. In the previous section we have seen
that the inner part of the cusp is mainly populated bymassive, short-lived giant stars.
Due to their sheer size, these stars also have the largest collision cross-sections. The
expected outcome of such a collision is either the stripping of the relatively tenuous
envelope of the giant leaving behind a hot thus bluer star, the formation of a common
envelope binary, or even the creation of exotic collision products such as a Thorne-
Żytkow object (Thorne & Żytkow, 1975), a giant star with a neutron star or black
hole at its core.

2.5 Relativistic effects

Due to the very strong gravity of the supermassive black hole, measurements of stellar
orbits aroundSgr. A* can test a number of predictionsmadeby general relativity (e.g.,
Merritt et al., 2010). Along with deviations from a Keplerian orbit, there are pro-
spects of probing more fundamental ideas such as the Einstein equivalence principle
(Angélil & Saha, 2011), time dilation (Zucker et al., 2006), or the no-hair conjecture
(Will, 2008; Sadeghian & Will, 2011). The plausible presence of a large number of
high-mass stellar black holes near the Galactic Centre due to mass segregation can
complicate the interpretation of these observations, because such compact objects
produce relativistic effects of their own.

A consistent (i.e., to the same order) expansion of the metric and of the energy-
momentum tensor in the Einstein’s field equations yields the so-called post-Newton-
ian corrections, which can be classified according to their dependence on the relativ-
istic parameter β ≡ v/c, or, equivalently, by the compactness parameter Υ = rs/r
(e.g., Maggiore, 2007, Sec. 5.1.2). From v2 ∼ Gmbh/r and rs = 2Gmbh/c2 we
obtain directly (v/c)2 ∼ rs/r hence the O(β) corrections to the orbital motion are
equivalent to the O(Υ1/2) corrections to the metric. Second order O(β2) effects
include periapsis shift and gravitational redshift. Third order O(β3) effects include
the Lense–Thirring effect (i.e., frame dragging; Lense & Thirring, 1918).
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Figure 2.7: Magnitude of relativistic effects as a function of the periapsis distance rp
expressed in gravitational radii rg = Gmbh/c2, as computed using Eqs. (2.84), (2.85)
and (2.87), assuming an orbit with e = 0.98. Decreasing the eccentricity slightly
increases the magnitude of the angular precessions (since it reduces the apocentre
distance, which appears in the denominator), but most TDEs will have e ≈ 1.
Changing the black hole spin has a very small effect on the Lense–Thirring precession,
as evidenced by the small difference between the green lines. We observe that all effects
decrease by more than two orders of magnitude within 100 rg, and that the third order
effects (here, Lense–Thirring precession) is about two orders ofmagnitudeweaker than
the second-order effects (apsidal precession and gravitational redshift).

2.5.1 Apsidal motion.

The equations of orbital dynamics predict closed orbits for only two types of poten-
tial: the harmonic oscillator and the Keplerian gravitational potential (e.g., Rosswog
& Brüggen, 2007, Sec. 6.2.1). Any deviations from the 1/r Keplerian potential (in-
troduced by e.g. higher-ordermultipolemoments, perturbations due to a third body,
or general relativistic corrections) lead to a rosette-shaped orbit with a prograde shift
Δω. For an orbit around a Schwarzschild black hole, Δω is given by (e.g., Weinberg,
1972, Eq. 8.6.11)

Δω =
3π

(1 − e2)
rs
a
. (2.84)

A putative cluster of compact objects around the black hole would have an opposite
effect on stellar orbits, leading to retrograde periapsis shift. The cause is that as the
star approaches periapsis, the stellar accelerationdue to thedarkobjects decreases due
to its scaling with the enclosedmass. Insofar as such a cluster exists (andmass segreg-
ation makes this very likely), the periapsis shifts will likely be entangled, and calcula-
tions show that measurements of at least three complete stellar orbits are needed in
order to unambiguously solve for its separate components (Rubilar & Eckart, 2001).
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2.5.2 Lense–Thirring precession.

A supermassive black holewith nonzero dimensionless spin parameter a⋆ (0 ≤ a⋆ ≤
1, note the difference between the spin parameter a⋆ and the semimajor axis a in the
following equations) produces two secular changes in the trajectory of a test particle:
a precession of the longitude of the ascending node Ω, and also a precession of the
periapsis, in addition to the s-independent one given in Eq. (2.84). The former is
given in the weak field limit by (Lense & Thirring, 1918)

ΔΩLT =
2
π

a⋆

(1 − e2)3/2
( rs

a

)3/2
, (2.85)

while the latter is given by

ΔωLT = −3ΔΩLT cos i, (2.86)

with ibeing the angle between the orbital angularmomentumof the star and the spin
of the black hole. In a tidal disruption event, Lense–Thirring precession is mainly
relevant after the star is disrupted, because frame dragging effects modify the spatial
configurationof thedebris. Inprinciple, theprecessionof thedebris streamunder the
influence of a fast-spinning black hole will either delay or prevent for several orbits
the self-intersection and shocking of the stream due to periapsis shift (e.g., Haya-
saki et al., 2013; Guillochon&Ramirez-Ruiz, 2015), though a systematic numerical
study of the parameter space (in at least impact parameter and black hole spin) is
required to completely answer this question. Our parameter space exploration in
Paper I does consider the influence of theBH spin on themorphology and energetics
of tidal disruptions, but only around a 106 M⊙ blackhole, andwithout following the
entire circularization process.

2.5.3 Gravitational redshift.

Photons with wavelength λ emitted at distance r from the black hole will lose energy
as they escape the deep potential well of the SMBH. The redshift measured by an
observer at infinity is given by

βz =
(
1 − rs

r

)−1/2
− 1, (2.87)

which can be Taylor-expanded as

z ≈ Υ/2 =
1
2
[
Υ0 + β2] (2.88)

for sufficiently small compactness parameters Υ (introduced above).
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In addition, there will be a Doppler-shift

βD =
1 + β cos θ√

1 − β2
− 1 ≈ β cos θ + 1

2
β2, (2.89)

with a classical component dependent on the angle θ between the direction of mo-
tion and the line of sight, and a second order transverse relativistic component with
the same magnitude as the second-order term of the gravitational redshift.

A third source of redshift is the Rømer time delay, a Newtonian effect caused
by variations in the distance between source and observer for orbits that are not
completely face-on. Its exact form depends on the orbital parameters, but results
in second-order corrections βR ≈ BRβ2 (Alexander, 2005).

Summing up all these contributions, one obtains the observed radial velocity
expanded in terms of the magnitude of the true stellar velocity β,

βr =

(
β⊙ + βz,gal + βz,⋆ +

1
2
Υ0

)
+ (cos θ) β+ (1 + BR) β2 + O(β3), (2.90)

with the constant term written in terms of the local velocity shift β⊙ (caused both
by the Doppler shift due to the motion of the Sun and the Earth, and the the grav-
itational blueshift by the Sun, Earth, and other planets), the galactic gravitational
redshift βz,gal, the gravitational redshift βz,⋆ due to the star’s potential well, and the
constant part of the gravitational redshift due to the SMBH in Eq. (2.88).





3
Modeling relativistic tidal disruptions

We have to remember that what we observe is not nature
herself, but nature exposed to our method of questioning.

Werner Heisenberg

3.1 Using SPH inmodeling TDEs

3.1.1 A brief overview of SPH

Lagrangian schemes aremore suited for the numerical modelling of tidal disruptions
than Eulerian ones, since the interpolation points move with the fluid, provide a
natural adaptive ‘mesh’, eliminate the need to follow a multitude of empty grid cells,
and ensure exact advection of the fluid elements. If well-formulated, they also en-
sure exact conservation of energy and (most importantly for this kind of problem)
angular momentum. The calculations can thus be just as easily conducted in the rest
frame of the black hole instead of the star. One of the more successful Lagrangian
methods, the so-called “smoothed particle hydrodynamics” (SPH; see Monaghan
1992; Rosswog 2009 for reviews), discretises the fluid into a set of interpolation
points, traditionally called ‘particles’, which can be thought of as fluid parcels. Each
particle a has assigned to it certain physical properties (e.g., mass ma, density ρa, in-
ternal energy ua, position ra) and a smoothing length ha. Continuous or ‘smoothed’
physical quantities f are computed at any given position r using a kernel-weighted
interpolation:

(f)SPH(r) =
∑

b
Vb fbW(|r− rb|, h), (3.1)

where Vb is a volume element (commonly taken as mb/ρb, with mb and ρb being,
respectively, the mass and density of a neighbouring particle b), and W is the so-
called ‘smoothing kernel’, whose ‘support’ (or in layman’s terms, radius of influence)
is determined by the smoothing length h. The summation is done over all particles b
that fall within the range of the kernel (usually, but not always, taken as 2h). In other
words, (f)SPH is the kernel-weighted average of the properties fb of all the particles for
which the givenpoint r iswithin the range of their kernel. Similarly, gradients of fluid
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properties can be calculated as sums over the analytically known kernel gradient:

(∇f)SPH(r) =
∑

b
Vb fb∇W(|r− ra|, h). (3.2)

The evolution equations for a perfect fluid (i.e., the Euler equations) can be written
in the SPH formalism as follows; note that we shall give the simplest, “vanilla ice”
version of the equations for a perfect fluid; while suitable for academic purposes, this
formulation lacks the additional terms resulting from the variable smoothing length
(the so-called “grad-h” terms), viscosity, and self-gravity.

The mass conservation equation can be written in Lagrangian form as

dρ
dt

= −ρ∇ · v. (3.3)

The standard practice in SPH is to keep the particle masses fixed, in which case mass
conservation is perfect by construction, and there is no need to solve Eq. (3.3) expli-
citly.

The momentum conservation equations, given in Lagrangian form as

dv
dt

= −∇P
ρ

(3.4)

can be discretized as

dva
dt

= −
∑

b
mb

(
Pa
ρa2

+
Pb
ρb2

)
∇aWab. (3.5)

Since this equation is manifestly symmetric in a and b, and ∇aWab = −∇bWba
(as long as Wab uses the mean of ha and hb), this form of the momentum equation
conserves total and angular momentum by construction.

Finally, the energy equation stems directly from the first law of thermodynamics,
(∂u/∂ρ)s = P/ρ2, and Eq. (3.3) as:

du
dt

= −P
ρ
∇ · v, (3.6)

and can be discretized as

dua
dt

=
Pa
ρa2

∑
b

mbvab · ∇aWab. (3.7)

Certain aspects of this standard formulation canbe greatly improved (Rosswog, 2015):
by choosing better volume elements than m/ρ (e.g. Hopkins, 2013) one can prevent
the occurence of spurious surface tension forces; by using integral-based gradient
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estimators (e.g. García-Senz et al., 2012) one can improve the gradient estimate by
several orders of magnitude; by using a kernel with certain mathematical proper-
ties (e.g., peaked kernels, or kernels with a non-negative Fourier transform such as
Wendland, 1995, first discussed in an SPH context byDehnen&Aly, 2012) one can
prevent particles from forming pairs, which would reduce the effective resolution of
the simulation.

All these modifications would result in subtle improvements, particularly in re-
solving small-scale structures or making the simulation less noisy. Unfortunately,
the issues that appear in simulating tidal disruptions (with SPH, or with any other
particle- or grid-based code), discussed below, cannot be alleviated by such improve-
ments, so for our simulations we used a “standard SPH” code, as described in detail
by Rosswog et al. (2009).

3.1.2 Choosing the time steps

We use a predictor–corrector time stepping scheme with individual time steps (see,
e.g., Press et al., 1992, Sec. 16.7, for a general description of such integrators), with
the following time step criteria in place:

• a CFL stability criterion (Courant, Friedrichs & Lewy, 1928), stating that
information propagated at the sound speed should not travel more than a
certain fraction of a smoothing length within a time step:

(Δt)CFL ≲ h/cs; (3.8)

• a relative “total force” criterion of the form

(Δt)f ≲
(

h
ftot

)1/2

; (3.9)

• a SMBHcriterion that is switched onwhenparticles are close to the blackhole
(e.g., several Schwarzschild radii), acting as a “safety net” when the relative
force criterion (which is primarily used for hydro forces) does not react suffi-
ciently fast to the extremely fast-changing acceleration along an orbit close to
the black hole:

(Δt)bh ≲
(

r3

Gmbh

)1/2

. (3.10)

The time step of each particle is then computed as a fraction (e.g., 0.1) of the min-
imumof these three quantities. In principle, any evolved quantity qmay have its own
generalized time step criterion, based on

(Δt)q <
(
q/q(n)

)1/n
, (3.11)
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(where (n) denotes the nth time derivative). Obvious candidates for q would be the
internal energies and the smoothing lengths, though in various experiments we have
not observed these additional criteria to significantlymodify theminimumtime step.

In the case of fully relativistic simulations, an additional challenge comes from
the fact that the relevant signal velocity that enters the CFL stability criterion is the
speed of light, so that the numerical time step is restricted to

Δt < 0.02 s
(

Δx
r⋆/100

)
, (3.12)

where Δx symbolises the smallest length-scale that needs to be resolved. This re-
striction may be relaxed after a disruption has occurred, but if the encounter is only
weak and a stellar core survives, similar time step restrictions still apply after the en-
counter. Therefore, a full simulation – starting from several tidal radii and following
the spreading of the stellar debris to large distances, the return of a fraction of the
debris to the BH, and the subsequent circularization and formation of an accretion
disc – is prohibitively expensive for a fully relativistic treatment. Together with the
enormous mass ratio between the SMBH and the star (which makes stellar self-
gravity only a tiny perturbationon topof theBHmetric), this explainswhy canonical
tidal disruptions have not yet been modeled, from beginning to end, using a fully
general-relativistic code.

3.1.3 Technical challenges

In the first stage of a tidal disruption, the star approaches the black hole. Here,
the time step is limited by the internal time step of the star (set by the Courant
and the relative force criteria, which in this stage are normally of roughly the same
order), so for large particle numbers this may well be the most expensive part of the
simulation, depending on the initial distance. Formost low- andmedium-resolution
simulations, we initially place the star at 5 tidal radii, such that the tidal force at the
beginning of the simulation is negligible (as discussed in Sec. 1 of Paper II), and only
gradually increases as the star approaches the SMBH. For particle numbers ≳ 106,
we start with the star at 3 tidal radii.

During the periapsis passage, the Courant and the force time step decrease due
to tidal compression, but the SMBH criterion also kicks in, and for deep encounters
it may actually determine the time step at periapsis. It is crucial to have a sufficiently
small time step here, especially for the (pseudo-)relativistic simulations, where the
periapsis shift is only accurately reproduced if Δt is sufficiently small.

As the star recedes from the black hole and the tidal debris expands, the time step
greatly increases, until the most delicate part of the simulation begins: the second
periapsis passage. As the bound tail approaches the SMBH (while the centre of mass
continues to recede along the parabolic trajectory), it becomes stretched along the
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length of the stream (in the radial direction) and compressed across the stream. The
spatial distribution thus becomes essentially one-dimensional. In addition, due to
the expansion, the density drops by several orders of magnitude (compared to the
original star). Due to the energy distribution that dictates the rise of the Ṁ-curve, if
this rise is not steep enough (as in the case of parabolic encounters) then the width
of the head of the debris stream cannot be resolved, independently of the resolution:
particles will return to periapsis “one by one” (see Figure 3.1).

In the course of all our simulations we use adaptive smoothing lengths, which
increase or decrease at every time step in order tomaintain between 50 and 90 neigh-
bours per particle. This is absolutely necessary given the geometrical constraints of
the problem (after disruption the star may expand to thousands of times its original
size, and the density contrast between themost and the least dense parts of the debris
streammay spanmanyorders ofmagnitude), but leads to problemsduring the second
periapsis passage: since the head of the stream is one-dimensional, the smoothing
length of these particles will increase far more than the width of the stream, and
these particles will have very distant neighbours downstream, leading to unresolved
interactions between the head and the rest of the stream . This effect is particularly
problematic once the stream “turns” at periapsis: the isolated particles, having huge
smoothing lengths, may suddenly detect the rest of the stream approaching from the
opposite direction, which triggers the∇·v artificial viscosity term for shock heating,
leading to a questionably large heating of the few isolatedparticles (while they are still
far away from the rest of the stream)6. In relativistic encounters, once the stream self-
intersects due to periapsis shift, the high temperature and internal energy of the head
of the stream will affect the hydrodynamic properties of all the particles close to the
self-intersection point, which drastically reduces our confidence in the accuracy of
the thermodynamical results past this point. The orbital motion and the geometry
of the stream remain virtually unaffected by this effect, so density and velocity plots
are always “well-behaved”.

In Paper I and Paper IVwe are interested in the energy distribution after the first
periapsis passage, and therefore we do not run into these problems: the simulations
are stopped after the energy freezes-in (approximately after the star exits the tidal
radius, long before the second periapsis passage). However, when following the long-
term evolution of a TDEonewill always encounter these issues, unless: a) the orbital
eccentricity is small enough to steepen the rise of the Ṁ curve and result in a thicker
stream that can be properly resolved across, or b) special preventive measures are
taken (e.g., the gravitational force due to the BH is “smoothed” so that the head of

6This issue may in part be due to the individual time steps, but running a simulation with global
time steps is, at the moment, prohibitively expensive. A solution would be to run only the problematic
part of the simulation, i.e., the beginning of the second periapsis passage, with global time steps, while
using individual time steps for the rest of the simulation. We plan to investigate this option in future
works.
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Figure3.1: Spatial distributionof the tidal debris shortly after thefirst periapsis passage
(red particles), and at the beginning of the second periapsis passage (green particles),
in a parabolic (e = 1; left panel) and an elliptical (e = 0.8; right panel) encounter.
The figure reveals the virtually one-dimensional nature of the stream as it returns to the
SMBH and starts the circularization process. The effect is much more pronounced in
parabolic encounters, while in elliptical encounters thewidth of the stream can often be
resolved satisfactorily. If not carefully handled, the head of the debris stream (consisting
of single particles returning to periapsis one by one) may cause serious problems to the
simulation, as discussed in the main text.

the stream does not follow its normal orbit around the black hole, but is cut off from
the rest of the stream at periapsis; this force smoothing would also solve the problem
of a few isolated particles close to the black hole slowing down the entire simulation
due to their impractically small time steps).

Needless to say, grid-based codes have their own types of problems with such
complicated geometries. The only feasible way of performing such computations is
in the rest frame of the centre of mass of the fluid (e.g., Guillochon et al., 2009; Guil-
lochon&Ramirez-Ruiz, 2013), since advection of such a thin stream of gas, possibly
along a complicated, self-intersecting orbit, while conserving angular momentum, is
close to impossible, unless an impractically fine grid is used. The code also needs a
dynamically-adapting AMR scheme that continuously refines the grid as the stream
geometry evolves.

To date, full simulations (i.e., with second periapsis passage and possibly disc
formation) of tidal disruptions have either: a) run the entire disruption and disc
formation with SPH, but considered an elliptical encounter (e.g. Bonnerot et al.,
2015;Hayasaki et al., 2015), inwhich thedebris returns toperiapsis in amuch shorter
time; b) simulated a system with a less extreme mbh/m⋆ ratio (e.g., intermediate-
mass black holes and white dwarfs), for which the dynamic ranges of length- and
timescales were more manageable (e.g. Rosswog et al., 2009; Shiokawa et al., 2015);
or c) performed different simulations for the two parts of the TDE, i.e., before and
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after the second periapsis passage: the former can be easily run with a grid code in
the rest frame of the star (e.g. Shiokawa et al., 2015) or with SPH; the results are
then mapped onto a grid (or used as a boundary condition), and the formation of
the disc is then followed with a grid-based code in the rest frame of the black hole7.
Nevertheless, to date, noneof the simulationswe are aware of have followed the entire
process of stellar disruption followed by disc formation for the most “typical” TDE
(solar-type star on a parabolic orbit with β = 1 around a 106 M⊙ black hole).

3.2 Including relativistic effects

As argued above, a fully general relativistic treatment of TDEs is prohibitively ex-
pensive. For the numerical study of a TDE, this leaves a handful of options:

a) Use an entirely Newtonian approach and restrict the focus to encounters that
can be treated as non-relativistic with a reasonable accuracy (this is the preval-
ent approach in the literature on TDEs; it works very well in the appropriate
regime, but obviously ignores all relativistic effects).

b) Use a Newtonian hydrodynamics scheme together with a pseudo-Newtonian
potential for approximately capturing some relativistic effects (e.g., Rosswog,
2009; Hayasaki et al., 2013, 2015; Bonnerot et al., 2015; Paper IV).
These pseudo-Newtonian potentials are usually tuned to reproduce special
properties for the motion around a BH, but cannot reproduce all of the rel-
evant relativistic effects simultaneously. Moreover, these kinds of potential
have mostly been developed for non-rotating BHs (see e.g. Tejeda & Ross-
wog, 2013, for a comparison of some of the most commonly used pseudo-
Newtonian potentials), and they have been less successful in modelling (the
more realistic) rotating BHs.

c) Follow a post-Newtonian approach for mildly relativistic encounters (Ayal
et al., 2000, 2001; Hayasaki et al., 2015); These approaches are computation-
ally very demanding since they require the solution of several Poisson equa-
tions (nine for the full approach of Ayal et al., 2001), while being unnecessary
far from the BH and inaccurate close to it. In addition, the computational
burden for solving the Poisson equations seriously restricts the numerical res-
olution that can be afforded for the hydrodynamics.

d) Use a full numerical relativity approach by solving the Einstein equations,
and restrict the attention mainly to regions near the BH (e.g. East, 2014);
we point out that all fully relativistic simulations (i.e., as opposed to a fixed-

7Note that “patching up” particle- and grid-based simulations for the various stages has its own
share of drawbacks, including the addition of an artificial, non-zero “vacuum” for the “empty” cells
of the grid-based simulation at the time when the transition is done, and the interpolation of the
particle distribution to a grid, which is never perfect and may often be accompanied by a downscaling
in resolution.
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metric treatment) to date use a very restrictive subset of the parameter space,
focusing on ultra-close encounters with small SMBH to stellar mass ratio.

e) Use a combination of some of the above approaches, as was done by, e.g.,
Shiokawa et al. (2015) and in Paper III.

In the following subsections we will present the new formalism for including the
exact Kerr gravitational and hydrodynamic accelerations, together with an ad-hoc
correction to the Newtonian self-gravity, into existing Newtonian codes, as intro-
duced in Paper II.

3.2.1 Geodesic motion

InNewtonian SPH codes, the gravitational influence of the black hole is represented
by the Newtonian potential,

ΦN(r) = −Gmbh

r
. (3.13)

The acceleration is then simply the negative gradient of the gravitational potential,(
d2xi
dt2

)
bh,N

= −∂iΦN(r)
(3.13)
= −Gmbhxi

r3
. (3.14)

Pseudo-Newtonian potential work by modifying Eq. (3.13) – and consequently Eq.
(3.14) – with additional, higher-order terms. The rest of the code is left virtually
unchanged, which makes this approach easy to implement and therefore attractive.
Several such potentials have been reviewed and diligently compared by Tejeda &
Rosswog (2013), so inwhat followswewill only give the expressions for threewidely-
used pseudo-Newtonian potentials. The oldest and simplest expression is due to
Paczyński & Wiita (1980; see also Abramowicz, 2009 for a step-by-step derivation),
whichmakes the deceptively simple choice of replacing the r in Eq. (3.13) by r−2rg,

ΦPW(r) = − Gmbh

r − 2rg
, (3.15)

thoughbydoing so it reproduces exactly the locations of the innermost stable circular
orbit and the marginally bound orbit.

An example of pseudo-Newtonian potential used to approximate test particle
motion around Kerr black holes is due to Nowak & Wagoner (1991):

ΦNW(r) = −Gmbh

r

(
1 −

3rg
r

+
12rg2

r2

)
(3.16)

TheTejeda&Rosswog (2013) potential achieves much better accuracy for Schwarz-
schild black holes than all the other available options, and reproduces exactly several
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relativistic features of themotion of test particles in Schwarzschild spacetime such as:
the location of the photon, marginally bound and marginally stable circular orbits;
the radial dependence of the energy and angular momentum of circular orbits; the
ratio between the orbital and epicyclic frequencies; the time evolution of parabolic-
like trajectories; the spatial projection of general trajectories as function of the con-
stants of motion and their periapsis advance. The full expression of the TR potential
is:

ΦTR(r, ṙ, φ̇) = −Gmbh

r
−

(
2rg

r − 2rg

)[( r − rg
r − 2rg

)
ṙ2 + r2 φ̇2

2

]
. (3.17)

By taking the gradient of this last expression, we obtain the gravitational acceleration
in a TR potential (Paper IV, Eq. A1),

(
d2xi
dt2

)
bh,TR

= −Gmbhxi
r3

(
1 − rs

r

)2
+

rsẋiṙ
r(r − rs)

− 3
2
rsxi φ̇2

r
, (3.18)

while the full-relativistic expression for the acceleration on a test particle in Schwarz-
schild space time is (Paper IV, Eq. A9),

(
d2xi
dt2

)
bh,S

= −Gmbhxi
r3

(
1 − rs

r

)2
+

rsẋiṙ
r(r − rs)

+
rsxiṙ2

2(r − rs)r2
− rsxi φ̇2

r
. (3.19)

The exact Schwarzschild expression has one extra term and a missing 3/2 factor, but
apart from that it is the same as the pseudo-Newtonian expression. It is also only
slightlymore complicated than the PW,NWorNewtonian accelerations, yet it gives
exact geodesic motion of test particles in Schwarzschild spacetime!

At the time Paper IV was published, we (much like all the authors before us)
had not realised the true meaning of this fact. In the case of a Newtonian SPH
code, the acceleration due to the BH is computed for each individual particle, but
the expression for the potential is not used in the evolution equations. Of course,
Eq. (3.19) does not have an associated “potential”, but since that is not used in the
code, the Newtonian (or pseudo-Newtonian) forces in the code can be replaced
directly with Eq. (3.19), which then yields exact geodesic motion for all the SPH
particles, at virtually zero additional computational cost. Furthermore, the expres-
sion in Eq. (3.19) can be replaced by the full expression in Kerr spacetime (which
involves similar, but many more terms, and includes the BH spin; see the Appendix
of Paper II). This completely obviates the need to use pseudo-Newtonian potentials
(which simply modify the BH acceleration but not the hydrodynamic or self-gravity
terms), since the exact acceleration can be used instead.

As a result of this realisation after the publication of Paper IV, we have set out
to calculate the Kerr expression, including the hydrodynamics terms and, as best as
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possible, self-gravity (which is non-obvious, since the mere notion of “self-gravity” is
only an approximation to general relativity), and to test this approach and its applic-
ability to tidal disruptions. This work is presented in Paper II, and in what follows
we will summarize the expressions for the hydrodynamic and self-gravity forces.

3.2.2 Hydrodynamics

The Newtonian Euler equation, expressing the conservation of momentum for an
ideal fluid and representing the contribution of hydrodynamic (i.e., pressure) forces
to the acceleration, is given by(

d2xi
dt2

)
hy,N

= −1
ρ
∂P
∂xi . (3.20)

In Sec. 3 of Paper II, the relativistic version of this expression is derived step-by-step,
resulting in (

d2xi

dt2

)
hy,rel

= −
(
giλ − ẋig0λ

) 1
Γ2ϱ ω

∂P
∂xλ . (3.21)

The expression is given in coordinate-independent terms, but in order to use it in
a code, a particular choice of coordinate system must be done. The two common
choices for a Kerr black hole are: the Boyer–Lindquist coordinate system (Boyer &
Lindquist, 1967), which is a generalization of the Schwarzschild coordinate system,
and theKerr–Schild coordinate system(Kerr&Schild, 2009). Theexpression for the
hydrodynamic acceleration in the two coordinates are given in Appendices B and C,
respectively, of Paper II, and we will not repeat them here. It is, however, instructive
to have a look at, e.g., Eq. (C.15), representing the hydrodynamic acceleration in the
x-direction in Kerr–Schild coordinates, and analyse its terms and prefactors (we will
reproduceEq.C.15below tomake it easier to follow thediscussion; the same exercise
could be done for any of the similar expressions in Appendices B and C):

(
d2xi

dt2

)
hy,KS

= − 1
Γ2ϱ ω

[
∂P
∂x

+ ẋ ∂P
∂t

+
2Mr
ρ2

(
ẋ + r x + a y

r2 + a2

)
A

]
, (3.22)

where

A =
∂P
∂t

− ∂P
∂x

(
r x + a y
r2 + a2

)
− ∂P

∂y

(
r y − a x
r2 + a2

)
− ∂P

∂z
z
r
. (3.23)

The prefactor is −1/
(
Γ2ρω

)
, where Γ is the generalized Lorentz factor (which is a

straightforward expression in terms of the particle’s position and velocity, and the
BH mass and spin), ω is the relativistic enthalpy (which is a function of the particle’s
internal energy, pressure, and density), and ρ is the prefactor for the Newtonian
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expression, as shown in Eq. (3.20). The 1/
(
Γ2ω

)
term effectively introduces a grav-

itational redshift effect close to the BH.
Eq. (3.22) also contains three terms in the square bracket: the first one, ∂P/∂x,

is just the Newtonian term from Eq. (3.20). The second one introduces a velocity
dependence, while the third and also most complex one contains non-trivial com-
binations of all the time and spatial derivatives of the pressure and the BH mass and
spin, introducing non-linearity in the equation: unlike in theNewtonian case, where
the acceleration in the x direction simply depends on the pressure derivative in the
x direction, in the Kerr case it depends on all the pressure derivatives (including the
time derivative). The Boyer–Lindquist expressions contain similar terms.

An important observation is that in spite of its complexity, Eq. (3.22) can be
computed after the Newtonian terms, ∂iP/ρ, are computed. The extra terms and
prefactors only require particle properties (such as density, internal energy, velocity,
position) and the BHmass and spin, but no interpolated quantities that would need
neighbour loops, other than the ones already computed in the Newtonian calcula-
tion of the pressure forces. Since the most expensive part of an SPH computation is,
by far, the loop over the neighbouring particles (see Gafton & Rosswog, 2011), this
means that the computational cost of the additional terms is negligible (as detailed
in Sec. 3.2 of Paper II), and that the corrections are virtually a “post-processing” step
that can be written as a separate subroutine, and can be turned on or off at will,
without modifications to the underlying, Newtonian code.

3.2.3 Self-gravity

As mentioned above, including self-gravity in a relativistic simulation is not an obvi-
ous or easy step, since the concept of “self-gravity” is a Newtonian approximation. In
principle, a fully consistent general-relativistic code would solve the Einstein equa-
tions, and would therefore not need to explicitly include self-gravity. This consistent
approach, however, is extremely expensive and, in the case of a TDE, is also nu-
merically very challenging: given the ratio of the SMBH to stellar mass, the star’s
contribution to the spacetime is but a tiny perturbation on top of the underlying
metric; yet on the length scale of the star, it cannot beneglected. In theparticular case
of partial tidal disruptions, this aspect becomes even more important, as self-gravity
is crucial in determining the evolution of the self-bound stellar core as it recedes
from the black hole, but if the surviving core is very small it can be an even tinier
perturbation on top of of the background metric than in the case of the original star.

Whenever theEinstein equations arenot solved (e.g., in all the fixed-metric simu-
lations, regardless of how they compute the BH accelerations), self-gravity should be
included, and the (mostly tacit) assumption throughout the literature is that New-
tonian self-gravity should be used. This is generally acceptable in simulations per-
formed in the rest frame of the star, though only as long as the spacetime can be
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considered flat across the space occupied by the star. In Paper II, however, we real-
ised that in a global coordinate system (Kerr–Schild or Boyer–Lindquist), where the
hydrodynamic acceleration contains gravitational redshift and non-linear effects, the
self-gravity acceleration should bemodified in a similar way. This changes Eq. (3.21)
to: (

d2xi

dt2

)
hy+sg,rel

= −
(
giλ − ẋig0λ

)[
1

Γ2ω

(
1
ϱ

∂P
∂xλ +

∂Φsg

∂xλ

)]
. (3.24)

This, in turn, modifies both Eqs. (3.22) and (3.23) by replacing all occurrences of
∂iP/ρ by ∂i(P/ρ + Φsg). Obviously, this comes at no additional computational
cost, since ∂iΦsg is already computed in a Newtonian code, and all the relativistic
prefactors and terms are already computed for the hydrodynamic forces. It is also
worth noting in Eq. (3.24) that, since self-gravity and pressure forces always enter
the evolution equation together, hydrostatic equilibrium will be guaranteed as long
as the two forces are comparable, and in the regime in which both are much larger
than the tidal forces due to the BH.This would not necessarily be the case if the fully
relativistic hydrodynamic forces (in particular, with the 1/Γ2ω prefactor) would be
used alongside the unmodified Newtonian self-gravity.

3.3 Test results

Apart from the way in which we treat self-gravity, which depends on the particular
choice of spatial coordinates – and hence is at odds with general relativity’s covari-
ance principle –, our particular implementation of the method also makes a number
of assumptions and approximations.

The most important one is discussed in Paper II, and concerns the use of Euc-
lidean distances for the calculation of all inter-particle separations. In an SPH code
this distance is critical for building the tree itself (which is then used for computing
the hydrodynamic and self-gravity accelerations), and then appears in all of the ex-
pressions that contain the SPHkernel or its derivatives, such as those for: gas density,
momentum equation, energy equation, artificial viscosity and shock heating terms,
and self-gravity acceleration. One could, in principle, also calculate the inter-particle
separation via the proper spatial distance using the spatial metric tensor γij (rather
than the Euclidean, flat-space distance that we are using). This would only be an
extra layer of complexity on top of an already approximate method, and we have
chosen not to implement it since the effects are likely negligible, as argued in Paper II
(although it is not a property of the method itself, but of our implementation).

Similarly, we have chosen to not calculate the time derivative of the self-gravita-
tional potential, which appears inEqs. (3.22) and (3.23) alongside the timederivative
of the pressure, but instead set it to zero. This is technically not correct, but we have
not at the time found a way to easily and stably calculate its value, and tests showed
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that the contribution of Φ̇sg does not affect the overall evolution of the system (e.g.,
in a tidal disruption simulation). This, of course, is a matter of implementation and
not a shortcoming of the method itself, and is still much more consistent than to
forgo all corrections and use purely Newtonian self-gravity together with relativistic
hydrodynamics. In any event, the time derivative of the potential is a negligible
contribution when compared to the other terms in Eq. (3.24).

In Paper II, we tested the validity of our approximative approach through a long
suite of tests, including comparison with previous results in the literature, and of
identical simulations run in both Boyer–Lindquist and Kerr–Schild coordinates,
and we found that in all cases it performs extremely well, even for very deep encoun-
ters.





4
Results and discussion

There is nothing more deceptive than an obvious fact.
Sherlock Holmes

4.1 Relativistic partial disruptions

In Paper IV, we found that for a given impact parameter β, relativistic effects become
increasingly important for larger black hole masses. This was to be expected on ana-
lytical grounds (since β is defined in a very simple way, based only on theNewtonian
tidal forces), but had not been observed in a systematic numerical study before.

In particular, we found two interesting effects: a) the range of β in which par-
tial disruptions occur is severely diminished as the BH mass increases (since due
to relativistic effects the tidal forces increase in strength for a given β); b) the kick
velocity increases with the black hole mass, making larger kicks more common than
in the Newtonian case, as low-β encounters are statistically more likely than high-β
encounters.

The first effect also implies that characterizing the strength of TDEs in terms
of β alone is no longer sufficient when relativistic effects are accounted for. Apart
from the rp/rt ratio (related to β), the rp/rg ratio also becomes important, and it
is the (complex) interplay between these two scales that determines the outcome of
the disruption. This has an important impact on the ability to extract fit formulae
from simulations, or generalize results to encounters with BHs of different masses,
as explained in the Appendix A of Paper I.

4.2 Energy distribution after disruption

In Paper I, we found that the energy distribution (dM/dE) is not flat around E = 0
(as normally assumed in the literature), except for a narrow range of impact para-
meters around β ∼ 1 (Fig. 6 in Paper I), when most of the matter resides in the thin
and dense tidal bridge. For weaker encounters, when the core of the star survives,
dM/dE exhibits a sharp central peak (corresponding to the core) and broad wings
(corresponding to the tidal arms) thatmay evolve at late times under the gravitational
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influence of the self-bound core (see, for example, the left panel of Fig. 2.3); for
strong disruptions, above β ∼ 4, the logarithmic histogram of dM/dE can be fitted
remarkably well by a generalized Gaussian function whose parameters appear to be
smooth functions of β, as shown in Appendix A of Paper I.

The spread in orbital mechanical energies, calculated as the standard deviation
of the energy distribution, σE, exhibits little variation with β until after β ∼ 4, where
it starts approaching the theoretical predictions of the standard frozen-in model,
σE ∝ β2 (Fig. 7 of Paper I). These results are somewhat in contradiction with those
recently presented by Steinberg et al. (2019), who found that above β ∼ 5 the spread
in energy is nearly insensitive with β. Apart from using very different codes and
computing the energy spread in different ways, it is difficult to understand well the
origin of this difference, as they do not present histograms of the energy distribution.
(Note also thedifferencebetweenFig. 7 ofPaper I andFig. 2.4 in this thesis, forwhich
we used the same data but computed the energy spread in two different ways! It is
certainlymore instructive to look at dM/dE instead of just at the “width” of this dis-
tribution, which can be arbitrarily defined.) We strongly emphasize that the energy
spread, in itself, does not offermuch information about the disruption, in general, or
the fallback rate, in particular, unless it is coupled with the (quite erroneous unless
β ≈ 1) assumption that the energy distribution is flat.

Concerning the possible relativistic effects on dM/dE, for mbh = 106 M⊙
we did not detect a significant change from the Newtonian picture of the spread
or distribution of energies, even for deep encounters. In Sec. 4.5 of Paper I we
explained this with an argument first put forward by Servin&Kesden (2017): when
comparing Newtonian and relativistic simulations with the same β, there are two
competing effects – a relativistic disruption occurs in a steeper potential but higher in
the potential well, i.e. further from the black hole – that partially cancel out to yield
relatively similar energy distributions and, consequently, return rates. In principle
we would expect a bigger difference for larger BH masses, although – given that the
two competing effects would still be in play – the answer would best be settled via
numerical simulations, which we have not yet performed.

4.3 Relativistic effects

InPaper I,we found that general relativity particularly affects deep encounters, within
a few event horizon radii, as follows: the strong (periapsis and nodal) precession
creates debris stream geometries impossible to obtain with the Newtonian equa-
tions (such as three-dimensional spirals winding multiple times around the black
hole, Fig. 4); part of the fluid can be launched on plunging orbits, which reduces
the fallback rate and decreases the mass of the resulting accretion disc (by as much
as 80 per cent in the deepest encounters with retrograde spin, Fig. 16); a suite of
compression and bounce episodes at periapsis in very deep relativistic encounters
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(Fig. 2)may generate distinctive X-ray signatures resulting from the associated shock
breakout; we also found that disruptions can even occur inside themarginally bound
radius, if the enhanced angular momentum spread launches part of the debris on
non-plunging orbits (as is the case of all the simulations with a⋆ = −0.99 and
β > 8).

Perhaps surprisingly, we also found relativistic effects to be important in weak
disruptions, where the balance between self-gravity and the tidal force is very close
to equilibrium. In this case, the otherwise minor relativistic effects can have decisive
consequences on the qualitative outcome of the disruption. This effect is greatly
enhanced for larger black hole masses, and perhaps the clearest proof of this was
shown in the right panel of Fig. 3 in Paper IV: formbh = 4× 107 M⊙, for instance,
the star will be completely disrupted at β ≈ 0.72 in a relativistic simulation, while
in the Newtonian picture the limit for disruption is independent of the BH mass.

In between, where the star is fully disrupted but relativistic effects are not ex-
treme, the difference is less conspicuous and resides mostly in a gentler rise of the
fallback rate, a later peak and a broader return rate curve, in agreement with the
few previous relativistic simulations. However, even in the case of moderately strong
encounters, we found that the differential periapsis shift creates much thicker debris
streams than in the Newtonian case, both in the bound part (possibly speeding up
the circularization) and in the unbound part (speeding up the production of the
recombination transient by a factor of two, and enhancing the interaction of the
ejecta with the interstellar medium).

4.3.1 Shape of the debris stream

Our simulations produced a large variety ofmorphological classes for the tidal debris
stream, some of which had not been presented in the literature. Based on geometry
alone,wefind that tidal disruptionsmay result in sevendistinctmorphological classes
(see Fig. 4.1), as described in Sec. 3.2.2 of Paper I.

At low β, theNewtonian and relativistic encounters are similar, passing progress-
ively through stages A, B, and C; however, in so far as the relativistic encounters are
more disruptive in terms of the mass removed from the star, they reach stages B and
C at lower impact parameters.

After β ∼ 2 (rp/rg ≈ 23.5), Newtonian and relativistic encounters become
qualitatively different: the Newtonian encounters with β ≳ 4 are similar, resulting
in virtually identical airfoil-shaped debris streams that expand adiabatically (type
D). For the encounters in Kerr, however, we observe several new morphological
classes, all of them ultimately linked to the individual relativistic precession of the
fluid elements: up to β ≈ 5, the tidal tails merge into a single, double-triangular
shaped stream with no tidal bridge (type E). After that, up until β ≈ 9, the debris
takes the shape of a very thick, banana-shaped stream that accretes from its inner part
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Figure 4.1: Morphological types of debris stream seen in our simulations. The colour
codingdenotes self-bound (yellow), bound (red), unbound (blue) andplunging (green)
particles, with the colour intensity being related to the logarithm of the density. Types
E, F andG are only seen in relativistic simulations. The axes are given in units ofGM/c2
and with the origin in the centre of mass of the debris. The dashed black arrow points
in the direction of the black hole, while the solid green arrow points in the direction of
motion of the centre of mass. This figure was produced by the author, using data from
our own simulations, and was included as Fig. 3 in Paper I.

(type F). Above β ∼ 9, the stream becomes a spiral (type G).
For case G, the spiral eventually ends up winding multiple times around the BH

(e.g., Fig. 13 in Paper II). The debris stream shown for class G is much thinner than
for classes E and F, but note that the time of the snapshot is a mere ∼ 30 seconds
after the periapsis passage, right before the plunge of themost boundparticle into the
event horizon, as compared with ∼ 57 hours for E and F. The spiral, however, con-
tinues to expand because of the differential periapsis shift, and it eventually reaches
a comparable width to cases E and F (based on ballistic extrapolation). Running the
full simulation, however, would be problematic, due to the imperative of accurately
treating the plunge and the second periapsis passage.

We also note that we have found the bound and unbound debris to be mixed
(as previously observed in the simulations of Cheng & Bogdanović, 2014), under
the action of the different periapsis shifts. This contrasts with the Newtonian case,
where the bound and unbound debris are always separated by the initial trajectory
of the centre of mass. The effect only appears in very close (rp/rg ≲ 5) encounters,
where a crescent-shape debris stream is formed (as seen before in Laguna et al., 1993;
Kobayashi et al., 2004; Cheng & Bogdanović, 2014; Paper II). Due to the same
mixing, a significant part of the plunging material (which is marked with green in
plotGof Fig. 4.1)may be energetically unbound, invalidating the premise (otherwise
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valid for the Newtonian case) that “half ” of the debris always escapes. Nevertheless,
we observed that the ratio of bound to unbound plunging material is not 1, but
ranges from ∼ 1.4 (for a⋆ = −0.99) to ∼ 2.3 (for a⋆ = 0.5). The a⋆ = 0.99
case produces a negligible amount of plungingmaterial, since the periapsis is furthest
from the radius of the marginally bound circular orbit, see Eq. (2.6).

4.3.2 Thickness of the debris stream

Weobserved that in theKerr case the debris stream tends to puff up due to both peri-
apsis shift and Lense–Thirring precession, two effects that do not exist inNewtonian
simulations. This may have implications on how long such a TDE can avoid detec-
tion, as the general prediction is that a thin-enough streamwill avoid self-intersection
for many orbital periods (Guillochon & Ramirez-Ruiz, 2015).

While reviewing how nodal precession may prevent the self-intersection of the
debris stream, Stone et al. (2019) pointed out that streams in SPH simulations with
adiabatic Equations of State (EOS) tend to puff up quickly due to heating from
internal shocks, and quickly circularize, while streams with isothermal EOS tend
to remain narrower for a longer time, avoiding circularization for up to 10 orbital
periods of the most-bound debris (Tmin, see Eq. 2.23). Based on the typical temper-
atures, densities and opacities of the bound TDE debris stream, it is unlikely that it
could be well described by an isothermal EOS, since it is highly opaque to radiation,
as estimated in Sec. 2.3.4. Nevertheless, the concern that SPH simulations tend to
produce puffed-upTDE debris streams is valid, and we addressed it in some detail in
Sec. 3.2.2 of Paper I, and will reproduce the main points of that discussion here.

In our simulations, since we only treat the first stage of the disruption, internal
shocks only occur during the strong compression experienced during the first peri-
apsis passage. In addition, the debris streams we obtain are much narrower in the
vertical direction than in the orbital plane (with typical ratios between 10 and 100),
and in any case remain much narrower in the Newtonian case than in Kerr (with
typical ratios ∼ 10 for classes E and F vs class D, see Fig. 4.1), all pointing towards
the thickening being a relativistic, rather than hydrodynamic effect.

Still, in order to test numerically that the puffingup is solely the result of geodesic
motion, and that hydrodynamic forces do not affect the stream’s evolution (at least
not before the second periapsis passage), we have also run three control simulations
of a complete disruption (Kerr, a⋆ = 0.99, β = 6), by taking a snapshot: a) as the
star exits the tidal radius after disruption, b) just after thefirst periapsis passage, and c)
as the star enters the tidal radius before disruption, switching off the self-gravity and
hydrodynamic forces, and letting the particles evolve on ballistic trajectories alone.
The results at the end of the simulations (at the same time as the SPH case, ≈ 57
hours after the periapsis passage) are shown in Fig. 5 of Paper I.We observe that cases
a) and b) yield similar results, but only case a) is virtually identical to the original
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simulation, showing that the constants of motion do evolve for some time after the
bounce, but settle in by the time the star exits the tidal radius. The case c) utterly fails
to reproduce the geometry of the debris stream, proving that the periapsis passage is
crucial in determininghow the energy and angularmomentumare redistributed, and
so the frozen-in model cannot be applied when entering rtid to determine the stream
geometry, at least for deep encounters. The results also show that the expansion of
the debris stream is due to geodesic motion alone, as even if the constants of motion
are frozen at periapsis, the resulting debris stream has a comparable thickness to the
one from the full simulation, and is any case much thicker than in the Newtonian
case.

4.3.3 Mass return rates and fallback curves

In Fig. 8 of Paper I we presented the fallback rates, Ṁ(t), for the Newtonian simula-
tions (left panel) and for the Kerr case with a⋆ = 0.5 (right panel). The procedure
for binning the data is discussed at length in Appendix B. The log–log plot is similar
to the one presented in Fig. 5 of Guillochon & Ramirez-Ruiz (2013), although the
parameter range is now extended to β = 11. The fact that, up to β ∼ 2, the results
match so well the ones from the reference paper is a non-trivial test of both, since the
two sets of simulations have been performed with different codes, using different
formalisms (high-resolution, grid-based simulations, with a multipole gravity solver,
in the rest frame of the star, vs medium-resolution, global, tree-based SPH particle
simulation), different ways of setting up the initial conditions and of postprocessing
the data, etc. We even reproduced the feature of Ṁpeak discovered by Guillochon
& Ramirez-Ruiz (2013) around β ∼ 1, where the initial trend at low β, towards
earlier and higher peaks with increasing β, reverses to later and lower ones. We find,
however, that the trend reverses again around β ∼ 3, where the peak starts shifting
to significantly higher accretion rates and to earlier times. Our explanation for this
behaviour is related to the occurrence of shocks during the periapsis passage, which
does not happen at lower β (this was discussed at length in Sec. 4.4 of Paper I).

In Fig. 9 we presented the times of the peak fallback rate tpeak and the peak
fallback rate Ṁpeak. For β < 2, the results for the Newtonian simulations are in
agreement with Fig. 12 of Guillochon & Ramirez-Ruiz (2013), whose fit curves are
overplotted with a dashed purple line. Our results also agree with the β = 1 tidal
disruptions of Cheng & Bogdanović (2014), who concluded that Newtonian rates
have a slightly earlier rise, while GR rates exhibit: a more gradual rise, a higher peak,
and a later rise above the Eddington luminosity.

In Fig. 11 of the same paper we presented the times of rise from 10% of Ṁpeak

to peak, and of decay from Ṁpeak back to 10%. This is probably where we notice the
biggest difference between relativistic and Newtonian simulations: around β ∼ 4,
where the largest differences occur, Newtonian simulations rise to peak a few days
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faster, but also decay a few months earlier. These quantities, although not custom-
arily presented in numerical studies of TDEs, may be of interest for the analysis of
observational data, as they are a good representation of howbroad the fallback curves
are, and of how quickly they rise and fall.

4.3.4 Transients from the unbound debris

We note that the relativistic debris in panels E and F in Fig. 4.1 exhibits a consider-
ably larger width than in the Newtonian case, due to the differential periapsis shifts
imparted on the different fluid streams during the periapsis passage. The prospect of
observing such debris streams are promising: the unboundmaterial keeps expanding
and cooling adiabatically, generating an optical transient from hydrogen recombin-
ation (Kasen & Ramirez-Ruiz, 2010). It would be plausible to make the assumption
that the axis ratio of the debris in the orbital plane, in the presence of strong periapsis
shift, is of the order of ∼ 1, as can be seen in classes E and F, instead of ∼ 10, as
was assumed by Kasen & Ramirez-Ruiz (2010), and which is in agreement with our
Newtonian simulations represented by class D. In this case, both the expansion time
te, defined by Kasen & Ramirez-Ruiz (2010) in their Eq. (8) as scaling with∝ E1/3

t ,
and the time at which the transient is expected to occur, tt, given in their Eq. (19)
with the same scaling, would be reduced by a factor of∼ 2. In order to test this, we
extract the times at which the mean and the maximum temperatures of the debris
stream drop below 104 K in two simulations with β = 6 (Newtonian and Kerr with
a⋆ = 0). For the mean temperatures, we find the Newtonian time to be ∼ 24 hr,
compared to ∼ 8.8 hr for Kerr, representing a speed-up of ∼ 2.7, in agreement
with our very simple order-of-magnitude analytical estimate. If, instead, we consider
the maximum temperature, the contrast is much larger: in the Newtonian case, the
maximum temperature, in the very centre of the debris stream, only drops below
104 K in∼ 160 days, while in theKerr case it takesmerely∼ 1.5 days, representing a
speed-up ofmore than 102. In any case, both effects are greatly diminished for β ≲ 3,
where the periapsis shift is not strong enough to generate the ∼ 1:1 aspect ratio of
the debris in the orbital plane.

Another scenario is the production of a γ-ray afterglow following the collision
of the expanding debris with molecular clouds (Chen et al., 2016). The effect of
relativistic periapsis shift is to significantly increase the solid angle of the unbound
ejecta, reducing the time it takes to end the free expansion and begin the Sedov-like
phase, as predicted by Khokhlov & Melia (1996) though never followed-up with
three-dimensional relativistic simulations.

4.3.5 Circularization

In Paper III we have studied the disruption, fallback and circularization of a red
dwarf (m⋆ = 0.1M⊙, r⋆ = 0.15R⊙) in an elliptical (e = 0.97) orbit around
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a 105 M⊙ black hole. The somewhat improbable set of parameters was chosen to
alleviate the computational burden, as discussed in Sec. 3.1.3 and as often employed
in the literature. We ran the first part of the simulation, up to the second periapsis
passage, with the relativistic SPH code presented in Paper II, then followed the fall-
back and circularization with a grid-based, GR-MHD code employing a fixed Kerr
metric (although, for simplicity, we only considered a non-rotating black hole).

In this study we observed the formation of a self-crossing shock that drives a
quasi-spherical outflow of hot, optically thick gas carrying significant kinetic energy.
The transfer of energy from the head of the stream to its tail generates a feedback loop
with a Keplerian period, modulating the dissipation in the self-crossing shock. The
rotating disc that forms is thick and highly turbulent, close tomarginally bound (and
thus well approximated by a zero-Bernoulli accretion flow), and remains turbulent
for many dynamical time scales. We found the influence of magnetic fields to be
negligible, since hydrodynamic turbulent viscosity completely dominates over the
viscosity mediated by magnetic fields. Finally, the estimated luminosity expected to
reach an observer is modest, both from the energetic outflow and from the bound
debris falling back on to the BH.

4.4 Further work

The numerical tool that we have contributed to as part of the work for this thesis
(Paper II) seems well-suited for tackling a broad range of problems, including tidal
disruptions and compact binarymergers. Some foreseeable improvementswould be:
a) touse amoremodernSPHformulation, including abetter kernelwith ahigher

number of neighbours, andmore accurate kernel derivatives (Rosswog, 2015);
b) to improve the formulation of the artificial viscosity term, for instance by

making it trigger on the time derivative of∇·v instead of on∇·v itself, which
may be too dissipative in strong compression without a shock (e.g., Cullen &
Dehnen, 2010);

c) to include, in a numerically stable way, the time derivative of the self-gravita-
tional potential ∂tΦsg in Eq. (3.24);

d) to use a faster, MPI-parallel tree (Gafton & Rosswog, 2011), as this will sig-
nificantly increase the performance and allow us to incorporate the last and
most important improvement:

e) to keep increasing the number of particles. While SPH is truly remarkable in
its ability to capture the dynamics of a system with an extremely low resolu-
tion8, it benefits tremendously from a (much) higher number of particles in
resolving the small-scale thermodynamic evolution of the fluid.

8Thefirst SPH simulations in the 1970s (Lucy, 1977; Gingold&Monaghan, 1977) used less than
100particles, and the first relativistic simulations in the 1990s (Laguna et al., 1993) used 3000particles,
yet they accurately reproduced the stellar structure and dynamical evolution to within a few per cent.
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