Neutrino-Driven Jets in Compact Object Mergers

Oliver Just Max-Planck-Institut für Astrophysik, Garching

MICRA Workshop Stockholm, August 18th 2015

With: H.-Th. Janka, N. Schwarz, A. Bauswein, M. Obergaulinger

Max Planck Institute for Astrophysics

Motivation

- central engine and launch mechanism of short GRBs not safely identified yet
- two most likely systems: BH-tori and (H)MNS
- two most likely mechanisms: neutrino-annihilation and (several) magneto-rotational processes
- most previous studies compute annihilation rate using 1D models (Popham, DiMatteo, Liu, ...) or by post-processing individual snapshots (Ruffert, Dessart, Richers, ...)
- other studies evolve jets without resolving the central engine (Aloy, Nagataki, Duffel, Murguia-Berthier, ...)
- → 2 necessary conditions to obtain about ~10⁴⁸ 10⁵⁰ erg in relativistic outflow material:
 - sufficient energy provided by nu-annihilation
 - sufficiently small energy loss during expansion
- What is the impact of the dynamical ejecta on the jet?

"ALCAR" Neutrino Transport Code (OJ, Obergaulinger, Janka '15, ArXiv:1501.02999)

Radiation-hydro with Boltzmann solver too expensive!

Our approach (see also: O'Connor '14, Kuroda '15):

→ Two-moment scheme with algebraic Eddington factor (AEF or M1 scheme)

$$E = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \quad \leftarrow \text{energy density}$$

$$F^{i} = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \, n^{i} \quad \leftarrow \text{momentum density}$$

$$P^{ij} = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \, n^{i} n^{j} \quad \leftarrow \text{pressure}$$

$$Q^{ijk} = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \, n^{i} n^{j} n^{k}$$

 $\partial_t E + \nabla_j F^j + \nabla_j (v^j E) + (\nabla_j v_k) P^{jk} - (\nabla_j v_k) \partial_\epsilon (\epsilon P^{jk}) = C^{(0)}$ $\partial_t F^i + c^2 \nabla_j P^{ij} + \nabla_j (v^j F^i) + F^j \nabla_j v^i - (\nabla_j v_k) \partial_\epsilon (\epsilon Q^{ijk}) = C^{(1),i}$ equations

 $\begin{array}{rcl}
P^{ij} &=& P^{ij}(E,F^{i}) \\
Q^{ijk} &=& Q^{ijk}(E,F^{i})
\end{array}$ approximate algebraic
closure relations (e.g. "M1 closure")

Effective save up of the two angular degrees of freedom!

Setup of BH-Torus Models

(first without dynamical ejecta)

- initial configuration given by equilibrium tori with constant specific angular moment
- simulations performed in 2D axisymmetry
- multi-group neutrino transport with 10 energy groups
- most dominant (electron) neutrino interactions included:

emission/absorption by nucleons

neutrino-nucleon scattering

neutrino-antineutrino annihilation

- → Newtonian hydrodynamics with pseudo-Newtonian gravitational potential by Artemova → mimics the ISCO and BH spin
- angular momentum transport: Shakura & Sunyaev α-viscosity
- variation of m_{torus}, M_{BH}, A_{BH}, α_{vis}
- similar models as used for nucleosynthesis study Just et al. '15 MNRAS 448, 541 and conceptually similar as in Fernandez '13, '14

Movie: BH-torus without prompt ejecta

MICRA Workshop Stockholm

Neutrino emission properties vs. torus mass

Neutrino emission properties vs. BH mass

Neutrino emission properties vs. BH spin

Neutrino emission properties vs. visc. parameter

Relativistic ejecta expansion into dynamical ejecta

- we now extend Newtonian to special relativistic hydro
- data for dynamical ejecta mapped from SPH simulations onto 2D BH-torus grid
- extend EOS to low densities, include electron recombination, radioactive heating

(Baus)	vein	et.	al.	'13)
--------	------	-----	-----	------

Merger	M_1	M_2	$A_{\rm BH,0}$	EOS	$\mathrm{pc/dc}$	$M_{\rm BH}$	$A_{\rm BH}$	$M_{ m torus}$	$M_{\rm dyn}$	B_{asy}	\overline{Y}_e	$ar{s}/k_{ m B}$	$ar{v}$
model	$[M_{\odot}]$	$[M_{\odot}]$				$[M_{\odot}]$		$[M_{\odot}]$	$[10^{-3} M_{\odot}]$				$[10^{10}\mathrm{cm/s}]$
$SFHO_{1218}$	1.2	1.8		SFHO	\mathbf{pc}	2.78	0.76	0.137	4.9	0.28	0.036	9.9	1.19
$SFHO_{13518}$	1.35	1.8		SFHO	\mathbf{pc}	2.97	0.78	0.099	4.3	0.16	0.036	6.7	1.28
$SFHX_{1515}$	1.5	1.5		SFHX	dc	2.77	0.78	0.106	21.2	0.01	0.032	8.2	0.67
$SFHO_{145145}$	1.45	1.45		SFHO	dc	2.68	0.79	0.091	14.3	0.02	0.033	7.9	0.64
$TM1_{175175}$	1.75	1.75		TM1	\mathbf{pc}	3.37	0.85	0.027	8.4	0.07	0.027	10.0	1.12
TMA_{1616}	1.6	1.6		TMA	dc	3.04	0.83	0.037	5.2	0.07	0.012	5.4	0.62

Model TM11451: NS-BH remnant

MOVIE

- dynamical ejecta are ignored since they are almost exclusively ejected in equatorial plane
- thermal fireball is successfully launched
- annihilation energy is efficiently converted to relativistic kinetic energy
- jet can expand almost unimpeded
- amount of energy sufficient at least to explain low-luminosity sGRBs

Model TM113520: NS-NS remnant

MOVIE

- dynamical ejecta are slightly equatorially dominated
 favorable for jet launch
- jet is successfully launched, but only after significant energy input by annihilation
- in the jet beam, annihilation energy is efficiently converted to relativistic kinetic energy
- however, during expansion the jet beam dissipates almost all kinetic energy due to interaction with the cocoon and jet head
- amount of energy not sufficient to explain sGRBs

Model SFH0145145: NS-NS remnant

MOVIE

- dynamical ejecta are almost spherical
 not favorable for jet launch
- annihilation only deposits thermal energy into dynamical ejecta
- however, not powerful enough to launch a jet

Summary

- using the M1 code ALCAR we examined neutrino emission + annihilation in BH-torus systems as functions of m_{torus}, M_{BH}, A_{BH},
 ^αvis
- typical annihilation energies are 10⁴⁷ 10⁴⁹ erg and efficiencies are 10⁻⁵ 10⁻⁴, while high values favor high m_{torus}, low M_{BH}, high A_{BH}, high α_{vis}
- for selected models we followed the relativistic jet expansion into the dynamical ejecta
- → NS-BH mergers: major fraction of anni. energy may end up in relativistic ejecta → could explain at least low-luminosity sGRBs
- → NS-NS mergers: either no jet is launched or the major fraction of anni. energy is dissipated in the dynamical ejecta → annihilation too weak
- for a delayed collapse in NS-NS mergers, the situation is likely even worse due to additional neutrino-driven winds
- results suggest that other mechanisms are needed to explain sGRBs in NS-NS mergers and high-energy sGRBs in NS-BH mergers!

Thank you for your attention!

August 18th, 2015

MICRA Workshop Stockholm

Appendix: Test of Neutrino Scheme

August 18th, 201:

MICRA Workshop Stockholm

Appendix: Jet expansion in external medium

(Bromberg et. al. '11)

MICRA Workshop Stockholm